Sensitivity of an Axi-Symmetric Tropical Cyclone Model to Two External Parameters

Authors

1 Atmospheric Research Center, Iranian National Institute for Ocean-ography and Atmospheric Science

2 Institute of Geophysics, University of Tehran

Abstract

More realistic simulation of hazards caused by Tropical Cyclones (TCs) requires knowledge of the mechanisms that formulate tropical cyclone. Here, sensitivity of an idealized framework has been tested to investigate role of two external parameters in vertical entropy flux. The first parameter controls the ratio of width of eyewall and downdraft regions to radius of maximum wind and the second parameter controls radial decay of wind velocity between two regions. This numerical model used conservation principles, assumed axi-symmetry and steadiness to model TC vortex, and let ventilation be occurred via the path-ways of downdrafts outside eyewall and eddy fluxes directly into eyewall. To test this framework, Tropical Cyclone Haiyan (TCH, formed over the Western part of Pacific Ocean on 3 November 2013) has been selected. Two kinds of datasets including Joint Typhoon Warning Centers (JTWC) Best Track data of Japan Meteorology Agency and Global Forecast System Analysis (GFS-ANL) data have been used. The model has been run for 60 different configurations, based on change of the two external parameters and size of two random do-mains. The sensitivity of the modeled convective entropy flux to the applied changes has been examined via two different aspects of investigation. In the first aspect, terms of the reference equation of convective entropy flux have been considered and their responses to the changes have been studies. While in the second aspect, values of the convective entropy flux at TCH peak activity time (PAT), before and after that have been inspected. Results, obtained from the first aspect, obviously indicate that the increase of the first external parameter increases the all terms of the referred equation, while increase of the second external parameter influenced the terms differently. Also enlarging the domains’ size does not impress the results similarly. Outcomes of the second aspect reveal that the implemented changes non-uniformly impact the values of the modeled convective entropy flux in the three considered times.

Keywords


  1. Bister, M., & Emanuel, K., (1998), Dissipative heating and hurricane intensity, Meteorology Atmospheric Physics, 65, 233–240. [DOI:10.1007/BF01030791]
  2. Bister, M., & Emanuel, K., (1998), Dissipative heating and hurricane intensity, Meteorology Atmospheric Physics, 65, 233–240. [DOI:10.1007/BF01030791]
  3. Bruyère, C. L., Holland, G. J., & Towler, E., (2012), investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin, Journal of Climate, 2524, 8611-8626. [DOI:10.1175/JCLI-D-11-00619.1]
  4. Bruyère, C. L., Holland, G. J., & Towler, E., (2012), investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin, Journal of Climate, 2524, 8611-8626. [DOI:10.1175/JCLI-D-11-00619.1]
  5. Bryan, G. H., (2008), On the computation of pseudoadiabatic entropy and equivalent potential temperature, Mon. Wea. Rev., 13612:5239-5245. [DOI:10.1175/2008MWR2593.1]
  6. Bryan, G. H., (2008), On the computation of pseudoadiabatic entropy and equivalent potential temperature, Mon. Wea. Rev., 13612:5239-5245. [DOI:10.1175/2008MWR2593.1]
  7. Bryan, G., & Rotunno, R., (2009), The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev., 137, 1770–1789. [DOI:10.1175/2008MWR2709.1]
  8. Bryan, G., & Rotunno, R., (2009), The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev., 137, 1770–1789. [DOI:10.1175/2008MWR2709.1]
  9. Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, (2007b), Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428–443. [DOI:10.1111/j.1600-0870.2007.00238.x]
  10. Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, (2007b), Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428–443. [DOI:10.1111/j.1600-0870.2007.00238.x]
  11. Davis, C., & Bosart, L., (2006), The formation of Hurricane Humberto 2001: The importance of extratropical precursors, Quart. J. Roy. Meteor. Soc., 132, 2055–2085. [DOI:10.1256/qj.05.42]
  12. Davis, C., & Bosart, L., (2006), The formation of Hurricane Humberto 2001: The importance of extratropical precursors, Quart. J. Roy. Meteor. Soc., 132, 2055–2085. [DOI:10.1256/qj.05.42]
  13. DeMaria, M., Knaff, J., & Connell, B., (2001), A tropical cyclone genesis parameter for the tropical Atlantic, Wea. Forecasting, 16, 219–233. https://doi.org/10.1175/1520-0434(2001)0162.0.CO;2 [DOI:10.1175/1520-0434(2001)0162.0.CO;2]
  14. DeMaria, M., Knaff, J., & Connell, B., (2001), A tropical cyclone genesis parameter for the tropical Atlantic, Wea. Forecasting, 16, 219–233. https://doi.org/10.1175/1520-0434(2001)0162.0.CO;2 [DOI:10.1175/1520-0434(2001)0162.0.CO;2]
  15. Chen, X., Wang, Y., Fang, J., & Xue, M., (2018), A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of Inner-Core Processes, Journal of the Atmospheric Sciences, 75(1), 235-255. [DOI:10.1175/JAS-D-17-0129.1]
  16. Chen, X., Wang, Y., Fang, J., & Xue, M., (2018), A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of Inner-Core Processes, Journal of the Atmospheric Sciences, 75(1), 235-255. [DOI:10.1175/JAS-D-17-0129.1]
  17. Emanuel, K. A., (1986), An air–sea interaction theory for tropical cyclones. Part I: Steadystate maintenance, J. Atmos. Sci., 43, 585–604. https://doi.org/10.1175/1520-0469(1986)0432.0.CO;2 [DOI:10.1175/1520-0469(1986)0432.0.CO;2]
  18. Emanuel, K. A., (1986), An air–sea interaction theory for tropical cyclones. Part I: Steadystate maintenance, J. Atmos. Sci., 43, 585–604. https://doi.org/10.1175/1520-0469(1986)0432.0.CO;2 [DOI:10.1175/1520-0469(1986)0432.0.CO;2]
  19. Emanuel, K. A., (1991), The theory of hurricanes, Annual Review of Fluid Mechanics, 231, 179-196. [DOI:10.1146/annurev.fl.23.010191.001143]
  20. Emanuel, K. A., (1991), The theory of hurricanes, Annual Review of Fluid Mechanics, 231, 179-196. [DOI:10.1146/annurev.fl.23.010191.001143]
  21. Emanuel, K. A., (1995), Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics, J. Atmos. Sci., 52, 3969– 3976. https://doi.org/10.1175/1520-0469(1995)0522.0.CO;2 [DOI:10.1175/1520-0469(1995)0522.0.CO;2]
  22. Emanuel, K. A., (1995), Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics, J. Atmos. Sci., 52, 3969– 3976. https://doi.org/10.1175/1520-0469(1995)0522.0.CO;2 [DOI:10.1175/1520-0469(1995)0522.0.CO;2]
  23. Emanuel, K., & Nolan, V., (2004), Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.
  24. Emanuel, K., & Nolan, V., (2004), Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.
  25. Emanuel, K., DesAutels, C., Holloway, C., & Korty, R., (2004), Environmental control of tropical cyclone intensity, J. Atmos. Sci., 617, 843-858. https://doi.org/10.1175/1520-0469(2004)0612.0.CO;2 [DOI:10.1175/1520-0469(2004)0612.0.CO;2]
  26. Emanuel, K., DesAutels, C., Holloway, C., & Korty, R., (2004), Environmental control of tropical cyclone intensity, J. Atmos. Sci., 617, 843-858. https://doi.org/10.1175/1520-0469(2004)0612.0.CO;2 [DOI:10.1175/1520-0469(2004)0612.0.CO;2]
  27. Emanuel, K., Sundararajan R., & Williams J., (2008), Hurricanes and global warming - results from downscaling IPCC AR4 simulations, Bull. Amer. Meteor. Soc., 89, 347–367. [DOI:10.1175/BAMS-89-3-347]
  28. Emanuel, K., Sundararajan R., & Williams J., (2008), Hurricanes and global warming - results from downscaling IPCC AR4 simulations, Bull. Amer. Meteor. Soc., 89, 347–367. [DOI:10.1175/BAMS-89-3-347]
  29. Frank, W. M., & Ritchie, E. A., (2001), Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes, Mon. Wea. Rev., 129, 2249–2269. https://doi.org/10.1175/1520-0493(2001)1292.0.CO;2 [DOI:10.1175/1520-0493(2001)1292.0.CO;2]
  30. Frank, W. M., & Ritchie, E. A., (2001), Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes, Mon. Wea. Rev., 129, 2249–2269. https://doi.org/10.1175/1520-0493(2001)1292.0.CO;2 [DOI:10.1175/1520-0493(2001)1292.0.CO;2]
  31. Jones, S., (1995), The evolution of vortices in vertical shear. I: Initially barotropic vortices, Quart. J. Roy. Meteor. Soc., 121, 821–851. [DOI:10.1002/qj.49712152406]
  32. Jones, S., (1995), The evolution of vortices in vertical shear. I: Initially barotropic vortices, Quart. J. Roy. Meteor. Soc., 121, 821–851. [DOI:10.1002/qj.49712152406]
  33. Kleinschmidt E., (1951), Grundlagen einer theorie der tropischen zyklonen, Arch. Meteor. Geophys. Bioklimatol., 4A, 53–72. [DOI:10.1007/BF02246793]
  34. Kleinschmidt E., (1951), Grundlagen einer theorie der tropischen zyklonen, Arch. Meteor. Geophys. Bioklimatol., 4A, 53–72. [DOI:10.1007/BF02246793]
  35. Lee, C. S., Cheung, K. K., W., Fang, W. T., Elsberry, R. L., (2010), Initial maintainance of tropical cyclone size in the western North Pacific, Mon. Wea. Rev., 138(8), 3207-3223. [DOI:10.1175/2010MWR3023.1]
  36. Lee, C. S., Cheung, K. K., W., Fang, W. T., Elsberry, R. L., (2010), Initial maintainance of tropical cyclone size in the western North Pacific, Mon. Wea. Rev., 138(8), 3207-3223. [DOI:10.1175/2010MWR3023.1]
  37. Lin, I. I., Pun, I. F., & Lien, C. C., (2014), "Category-6" supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming, Geophysical Research Letters, 41(23), 8547-8553. [DOI:10.1002/2014GL061281]
  38. Lin, I. I., Pun, I. F., & Lien, C. C., (2014), "Category-6" supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming, Geophysical Research Letters, 41(23), 8547-8553. [DOI:10.1002/2014GL061281]
  39. Lin, N., Jing, R., Wang, Y., Yonekura, E., Fan, J., & Xue, L. (2017), A statistical investigation of the dependence of tropical cyclone intensity change on the surrounding environment, Mon. Wea. Rev., 145, 2813–2831 [DOI:10.1175/MWR-D-16-0368.1]
  40. Lin, N., Jing, R., Wang, Y., Yonekura, E., Fan, J., & Xue, L. (2017), A statistical investigation of the dependence of tropical cyclone intensity change on the surrounding environment, Mon. Wea. Rev., 145, 2813–2831 [DOI:10.1175/MWR-D-16-0368.1]
  41. Marin, J., Raymond, D., & Raga, G., (2009), Intensification of tropical cyclones in the GFS model, Atmos. Chem. Phys., 9, 1407–1417. [DOI:10.5194/acp-9-1407-2009]
  42. Marin, J., Raymond, D., & Raga, G., (2009), Intensification of tropical cyclones in the GFS model, Atmos. Chem. Phys., 9, 1407–1417. [DOI:10.5194/acp-9-1407-2009]
  43. McBride, J., & Zehr, R., (1981), Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems, J. Atmos. Sci., 38, 1132–1151. https://doi.org/10.1175/1520-0469(1981)0382.0.CO;2 [DOI:10.1175/1520-0469(1981)0382.0.CO;2]
  44. McBride, J., & Zehr, R., (1981), Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems, J. Atmos. Sci., 38, 1132–1151. https://doi.org/10.1175/1520-0469(1981)0382.0.CO;2 [DOI:10.1175/1520-0469(1981)0382.0.CO;2]
  45. Montgomery, M. T., & Smith, RK., (2014), Paradigms for tropical cyclone intensification, naval postgraduate school Monterey ca dept. of meteorology.
  46. Montgomery, M. T., & Smith, RK., (2014), Paradigms for tropical cyclone intensification, naval postgraduate school Monterey ca dept. of meteorology.
  47. Nolan, D., & Rappin, E., (2008), Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments, Geophys. Res. Lett., 35, L14805, doi: 10.1029/2008GL034147. [DOI:10.1029/2008GL034147]
  48. Nolan, D., & Rappin, E., (2008), Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments, Geophys. Res. Lett., 35, L14805, doi: 10.1029/2008GL034147. [DOI:10.1029/2008GL034147]
  49. Nolan, D., & McGauley, M., (2012), Tropical cyclogenesis in wind shear: Climatological relationships and physical processes, Cyclones: Formation, Triggers, and Control, 1-36.
  50. Nolan, D., & McGauley, M., (2012), Tropical cyclogenesis in wind shear: Climatological relationships and physical processes, Cyclones: Formation, Triggers, and Control, 1-36.
  51. Nolan, D., (2007), What is the trigger for tropical cyclogenesis?, Aust. Meteor. Mag., 56, 241–266.
  52. Nolan, D., (2007), What is the trigger for tropical cyclogenesis?, Aust. Meteor. Mag., 56, 241–266.
  53. Pegahfar, N., & Ghafarian, P., (2014), Analysis of two dynamic parameters of CAPE and Helicity for Haiyan Tropical Cyclone, International ICOPMAS Conference, Tehran, Iran.
  54. Pegahfar, N., & Ghafarian, P., (2014), Analysis of two dynamic parameters of CAPE and Helicity for Haiyan Tropical Cyclone, International ICOPMAS Conference, Tehran, Iran.
  55. Pegahfar, N., & Ghafarian, P., (2016), Investigation of meteorological parameters in the lower and upper troposphere during tropical cyclone Haiyan, Journal of Oceanography 726:55-67.
  56. Pegahfar, N., & Ghafarian, P., (2016), Investigation of meteorological parameters in the lower and upper troposphere during tropical cyclone Haiyan, Journal of Oceanography 726:55-67.
  57. Pegahfar, N., & Ghafarian, P., (2017), Dynamic and Thermodynamic Analysis of Tropical Cyclone Haiyan, Journal of Space and Earth Physics, 424, 13-26.
  58. Pegahfar, N., & Ghafarian, P., (2017), Dynamic and Thermodynamic Analysis of Tropical Cyclone Haiyan, Journal of Space and Earth Physics, 424, 13-26.
  59. Pielke, Jr. R., Gratz, J., Landsea, C., Collins, D., Saunders, M., & Musulin, R., (2008), Normalized hurricane damages in the United States: 1900-2005. Natural Hazards Rev., 9, 29–42. [DOI:10.1061/(ASCE)1527-6988(2008)9:1(29)]
  60. Pielke, Jr. R., Gratz, J., Landsea, C., Collins, D., Saunders, M., & Musulin, R., (2008), Normalized hurricane damages in the United States: 1900-2005. Natural Hazards Rev., 9, 29–42. [DOI:10.1061/(ASCE)1527-6988(2008)9:1(29)]
  61. Riehl, H., (1951), A model for hurricane formation, J. Appl. Phys., Vol. 21, 917–925. [DOI:10.1063/1.1699784]
  62. Riehl, H., (1951), A model for hurricane formation, J. Appl. Phys., Vol. 21, 917–925. [DOI:10.1063/1.1699784]
  63. Schenkel, B. A., Lin, N., Chavas, D., Vecchi, G. A., Oppenheimer, M., & Brammer, A., (2018), Lifetime Evolution of Outer Tropical Cyclone Size and Structure as Diagnosed from Reanalysis and Climate Model Data, Journal of Climate, 31(19), 7985-8004. [DOI:10.1175/JCLI-D-17-0630.1]
  64. Schenkel, B. A., Lin, N., Chavas, D., Vecchi, G. A., Oppenheimer, M., & Brammer, A., (2018), Lifetime Evolution of Outer Tropical Cyclone Size and Structure as Diagnosed from Reanalysis and Climate Model Data, Journal of Climate, 31(19), 7985-8004. [DOI:10.1175/JCLI-D-17-0630.1]
  65. Shimada, U., Kubota, H., Yamada, H., Cayanan, E. O., & Hilario, F. D., (2018), Intensity and Inner-Core Structure of Typhoon Haiyan (2013) near Landfall: Doppler Radar Analysis, Monthly Weather Review, 146(2), 583-597. [DOI:10.1175/MWR-D-17-0120.1]
  66. Shimada, U., Kubota, H., Yamada, H., Cayanan, E. O., & Hilario, F. D., (2018), Intensity and Inner-Core Structure of Typhoon Haiyan (2013) near Landfall: Doppler Radar Analysis, Monthly Weather Review, 146(2), 583-597. [DOI:10.1175/MWR-D-17-0120.1]
  67. Smith, R., Ulrich, W., & Sneddon, G., (2000), On the dynamics of hurricane-like vortices in vertical-shear flows: Quart, J. Roy. Meteor. Soc., 126, 2653–2670. [DOI:10.1002/qj.49712656903]
  68. Smith, R., Ulrich, W., & Sneddon, G., (2000), On the dynamics of hurricane-like vortices in vertical-shear flows: Quart, J. Roy. Meteor. Soc., 126, 2653–2670. [DOI:10.1002/qj.49712656903]
  69. Tang, B., & Camargo, S. J., (2014), Environmental control of tropical cyclones in CMIP5: A ventilation perspective, Journal of Advances in Modeling Earth Systems, 61, 115-128. [DOI:10.1002/2013MS000294]
  70. Tang, B., & Camargo, S. J., (2014), Environmental control of tropical cyclones in CMIP5: A ventilation perspective, Journal of Advances in Modeling Earth Systems, 61, 115-128. [DOI:10.1002/2013MS000294]
  71. Tang, B., & Emanuel, K., (2010), Midlevel ventilation's constraint on tropical cyclone intensity, J. Atmos. Sci., 67, 1817–1830. [DOI:10.1175/2010JAS3318.1]
  72. Tang, B., & Emanuel, K., (2010), Midlevel ventilation's constraint on tropical cyclone intensity, J. Atmos. Sci., 67, 1817–1830. [DOI:10.1175/2010JAS3318.1]
  73. Tang, B. H. A., (2010), Midlevel ventilation's constraint on tropical cyclone intensity, Doctoral Thesis, Massachusetts Institute of Technology.
  74. Tang, B. H. A., (2010), Midlevel ventilation's constraint on tropical cyclone intensity, Doctoral Thesis, Massachusetts Institute of Technology.
  75. Tory, K., Davidson, N., & Montgomery, M., (2007), Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms, J. Atmos. Sci., 64, 3195–3213. [DOI:10.1175/JAS4023.1]
  76. Tory, K., Davidson, N., & Montgomery, M., (2007), Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms, J. Atmos. Sci., 64, 3195–3213. [DOI:10.1175/JAS4023.1]
  77. Vickery, P.J., F.J. Masters, M.D. Powell and D. Wadhera, (2009), Hurricane hazard modelling: the past, present and future, Journal of Wind Engineering and Industrial Aerodynamics, 97, 392-405. [DOI:10.1016/j.jweia.2009.05.005]
  78. Vickery, P.J., F.J. Masters, M.D. Powell and D. Wadhera, (2009), Hurricane hazard modelling: the past, present and future, Journal of Wind Engineering and Industrial Aerodynamics, 97, 392-405. [DOI:10.1016/j.jweia.2009.05.005]
  79. Wang, Y., (2012), Recent research progress on tropical cyclone structure and intensity, Trop. Cyclone Res. Rev, 1, 254-275.
  80. Wang, Y., (2012), Recent research progress on tropical cyclone structure and intensity, Trop. Cyclone Res. Rev, 1, 254-275.
  81. Wang, G., Zhao, B., Qiao, F., & Zhao, C., (2018), Rapid intensification of Super Typhoon Haiyan: the important role of a warm-core ocean eddy, Ocean Dynamics, 68(12), 1649-1661. [DOI:10.1007/s10236-018-1217-x]
  82. Wang, G., Zhao, B., Qiao, F., & Zhao, C., (2018), Rapid intensification of Super Typhoon Haiyan: the important role of a warm-core ocean eddy, Ocean Dynamics, 68(12), 1649-1661. [DOI:10.1007/s10236-018-1217-x]
  83. Wong, M. & Chan, J., (2004), Tropical cyclone intensity in vertical wind shear, J. Atmos. Sci., 61, 1859–1876. https://doi.org/10.1175/1520-0469(2004)0612.0.CO;2 [DOI:10.1175/1520-0469(2004)0612.0.CO;2]
  84. Wong, M. & Chan, J., (2004), Tropical cyclone intensity in vertical wind shear, J. Atmos. Sci., 61, 1859–1876. https://doi.org/10.1175/1520-0469(2004)0612.0.CO;2 [DOI:10.1175/1520-0469(2004)0612.0.CO;2]
  85. Zehr, R., (1992), Tropical cyclogenesis in the western north Pacif ic, NOAA Tech. Rep. NESDIS 61, 181 pp.
  86. Zehr, R., (1992), Tropical cyclogenesis in the western north Pacif ic, NOAA Tech. Rep. NESDIS 61, 181 pp.