The Ultraviolet Index Forecast Using TUV Radiation Model over the Coasts of the Persian Gulf and Oman Sea

Document Type : Original Research Article

Authors

1 Research Institute of Meteorology and Atmospheric Science

2 Assistant Professor, Research Institute of Meteorology and Atmospheric Science, Tehran, Iran

Abstract

Ultraviolet radiation can have a significant impact on human health, thus its prediction is necessary and important. In this study, the Tropospheric Ultraviolet and Visible (TUV) Radiation model was used to predict the UltraViolet Index (UVI). This model requires the total ozone column, albedo and Aerosol Optical Depth (AOD) data to forecast UVI. The Global Forecasting System (GFS) data was used for the total ozone column and albedo data, and the Whole Atmosphere Community Climate Model (WACCM) was used for AOD data. In this study, 102 case studies were selected for the coastal stations and islands of the Persian Gulf and Oman Sea in 2019, 2020 and 2021. Due to the lack of access to the actual value of UVI, the Ozone Monitoring Instrument (OMI) data were assumed as observational data. The verification results showed that in the warmer seasons of the year, when UVI levels are higher than in cold seasons, the forecast error is higher. Furthermore, when the AOD value is high, the forecast error is also high, but generally, the forecast is very accurate. For all selected case studies, the ME, MAE, RMSE and R values are -0.81, 1.07, 1.83 and 0.75 respectively, indicating the high accuracy of the UVI forecasts.

Keywords

Main Subjects


  1. Diffey, B.L., 1991, “Solar ultraviolet radiation effects on biological systems”. Physics in Medicine & Biology, 36, pp. 299–328. https://doi.org/10.1088/0031-9155/36/3/001.
  2. Lucas, R., McMichael, T., Smith, W., and Armstrong, B., (2006), “Solar ultraviolet radiation: global burden of disease from solar ultraviolet radiation. In: Prüss-Üstün, A., Zeeb, H., Mathers, C. and Repacholi, M. (Eds.), World Health Organization Public Health and the Environment Geneva 2006. Environmental Burden of Disease Series 13. Geneva, Switzerland: World Health Organization, p. 250 https://www.who.int/uv/health/solaruvradfull_180706.pdf.
  3. Young, A.R., (2006). “Acute effects of UVR on human eyes and skin”. Progress in Biophysics and Molecular Biology, 92, pp. 80–85. https://doi.org/10.1016/j.pbiomolbio.2006.02.005.
  4. Webb, A.R., Slaper, H., Koepke, P. and Schmalwieser, A.W., 2011. “Known your standard: clarifying the CIE erythema action Spectrum”. Photochemistry and Photobiology, 87(2), pp. 483–486. https://doi.org/10.1111/j.1751-1097.2010.00871.x.
  5. McKinlay, A.F. and Diffey, B.L., 1987. “A reference action spectrum for ultraviolet induced erythema in human skin”. CIE Journal, 6, pp. 17–22.
  6. Herman, J., Huang, L., McPeters, R., Ziemke, J., Cede, A. and Blank, K., 2018. “Synoptics ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth–sun Lagrange 1 orbit”. Atmospheric Measurement Techniques, 11, pp. 177–194. https://doi.org/10.5194/amt-11-177-2018.
  7. Erickson D. J., Sulzberger, B., Zepp, R.G. and Austin, A.T., 2015. “Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks”. Photobiol. Sci, 14, pp. 127–148.
  8. Hader, D. P., Kumar, H. D., Smith, R. C. and Worrest, R. C., 2007. “Effects of solar UV radiation on aquatic ecosystems and interactions with climate change”. Photobiol. Sci, 6, pp. 267–285, 10.1039/B700020K.
  9. Smith, R. C., and Cullen, J. J., 1995. “Effects of UV radiation on phytoplankton”. Reviews of Geophysics, 33, pp. 1211–1223, 10.1029/95RG00801, 10.1029/95RG00801.
  10. Zepp, R., Erickson, D., Paul, Nigel. and Sulzberger, B., 2007. “Interactive effects of solar UV radiation and climate change on biogeochemical cycling”. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 6, pp. 286-300. 10.1039/b700021a.
  11. Butchart, N., 2014. “The Brewer-Dobson circulation”. Reviews of Geophysics, 52, pp. 157–184.
  12. Hegglin, M. I. and Shepherd, T. G., 2009. “Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux”. Nature Geoscience, 2, pp. 687–691, 10.1038/ngeo604.
  13. Bais, A., Tourpali, K., Kazantzidis, A., Akiyoshi, H., Bekki, S., Braesicke, P., Chipperfield, M. P., Dameris, M., Eyring, V., Garny, H., and et al., 2011. “Projections of UV radiation changes in the 21st century: impact of ozone recovery and cloud effects”. Atmospheric Chemistry and Physics, 11, pp. 7533–7545.
  14. Correa, M. d. P., Godin-Beekmann, S., Haeffelin, M., Bekki, S., Saiag, P., Badosa, J., Jegou, F., Pazmino, A. and Mahe, E., 2013. “Projected changes in clear-sky erythemal and vitamin D effective UV doses for Europe over the period 2006 to 2100”. Photobiol. Sci, 12, pp. 1053–1064.
  15. Bais, A., McKenzie, R., Bernhard, G., Aucamp, P., Ilyas, M., Madronich, S., and Tourpali, K., 2015. “Ozone depletion and climate change: impacts on UV radiation”. Photochemical & Photobiological Sciences, 14, pp. 19–52.
  16. Brewer, A. W., 1949. “Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere”. Quarterly Journal of the Royal Meteorological Society, 75, pp. 351–363.
  17. Dobson, G., 1956. “Origin and distribution of the polyatomic molecules in the atmosphere”. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 236, pp. 187–193.
  18. Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B. and Pfister, L., 1995. “Stratosphere-troposphere exchange”. Reviews of Geophysics, 33, pp. 403–439, 10.1029/95RG02097, 10.1029/95RG02097.
  19. Shepherd, T. G., 2008. “Dynamics, stratospheric ozone, and climate change”. Atmosphere-Ocean, 46, pp. 117–138, 10.3137/ao.460106.
  20. Lamy, K., Josse, B., Portafaix, T., Bencherif, H., Godin-Beekmann, S., et al., 2017. “Ultraviolet Radiation evolution during the 21st century”. CCMI 2017, Chemistry-Climate Model Initiative Science Workshop, Jun 2017, Toulouse, France. ffhal-01648231f
  21. Madronich, S. and Flocke, S., 1997. “Theoretical estimation of biologically effective UV radiation at the earth's surface. In: Zerefos, C. S. and Bais, A.F. (Eds.) Solar Ultraviolet Radiation: Modelling, Measurements, and Effects”. Berlin: Springer, pp. 23–48.
  22. Podrascanin, Z., Atlagic, M., Mijatovic, Z. and Sremac, A.F., 2018. “Uv Index Forecasting in Vojvodina Region”. RAD Conf. 3, pp. 187–190.
  23. Roshan, D.R., Koc, M., Abdallah, A., Martin-Pomares, L., Isaifan, R. and Fountoukis, C., 2020. “UV Index Forecasting under the Influence of Desert Dust: Evaluation against Surface and Satellite-Retrieved Data”.Atmosphere, 11, https://doi.org/10.3390/atmos11010096
  24. Lamy, K., Portafaix, T., Josse, B., Brogniez, C., Godin-Beekmann, S., et al., 2019. “Ultraviolet Radiation modelling using output from the Chemistry Climate Model Initiative”. Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 19(15), pp. 10087–10110.
  25. Krzyƛcin, J.W., Guzikowski, J., Pietruczuk, A. and Sobolewski, P., 2020. “Improvement of the 24 hr forecast of surface UV radiation using an ensemble approach”.Meteorol Appl. 27: e1865. https://doi.org/10.1002/met.1865.
  26. Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Sassi, F., Boville, B. A., Marsh, D., Harvey, L., Randall, C., Randel, W., Lamarque, J.-F., Emmons, L. K., Hess, P., Orlando, J., Tyndall, J., and Pan, L., 2007. “Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model”. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879, 2007.
  27. Garcia, R. R., Marsh, D., Kinnison, D. E., Boville, B. and Sassi, F., 2007. “Simulations of secular trends in the middle atmosphere, 1950-2003”. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.
  28. Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani, L. M., 2013. “Climate change from 1850 to 2005 simulated in CESM1 (WACCM)”. Journal of Climate, 26 (19), doi:10.1175/JCLI-D-12-00558.1.
  29. Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Camara, A. and Murphy, D., 2017. “Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results”. Atmos. Sci., 74, 275-291, doi:10.1175/JAS-D-16-0104.1.
  30. Lin, S. J., 2004. “A “vertically-Lagrangian” finite-volume dynamical core for global atmospheric models”. Wea. Rev., 132, pp. 2293-2307.
  31. Prasad, S. S., Deo, R. C., Downs, N,. Igoe, D., Parisi A. V. and Soar, J., 2020. "Cloud Affected Solar UV Prediction with Three-Phase Wavelet Hybrid Convolutional Long Short-Term Memory Network Multi-Step Forecast System" in IEEE Access, vol. 10, pp. 24704-24720, doi: 10.1109/ACCESS.2022.3153475.