Spatial and temporal variations of the electrical conductivity and magnetic field of the Caspian Sea using Princeton Ocean Model

Document Type : Original Research Article


1 Graduate of Physical Oceanography Department, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University

2 Assistant Professor, Physical Oceanography Department, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University


In this study, changes in the magnetic field and electrical conductivity across the Caspian Sea Basins were investigated using the Princeton Ocean Model (POM). In this model, bathymetry, temperature and salinity and atmospheric flux data were collected from GEBCO08, WOA and ECMWF databases, respectively. This model was implemented for ten years (2009-2019), and temperature, salinity and current velocity were extracted from the model output to calculate the electrical conductivity and simulate the magnetic field anomalies of the Caspian Sea. The calculated electrical conductivity indicates that the dominant factor in electrical conductivity was temperature. In the study area, the highest and lowest electrical conductivity were in the southern Caspian basin (SCB) with a value of 2.3 S/m in summer and in the northern Caspian basin (NCB) about 0.8 S/m in autumn. Also, the results show the highest and lowest magnetic fields in the SCB were 16 nT in March and 12 nT in November, respectively. The distribution of magnetic field anomalies with different values in the middle Caspian basin (MCB) can also be observed for all months. According to the results, the dominant factor in the magnetic field anomalies is the current velocity, which has the most effect on the magnetic field in the western part of the Caspian Sea.


  1. Larsen, J., 1992. Transport and heat flux of the Florida Current at 27 ̊N derived from cross-stream voltages and profiling data: Theory and observations, Philos. Trans. R. Soc. London, Ser. A, 338, 169– 236.
  2. Stephenson, D., Bryan, K., 1992. Large‐scale electric and magnetic fields generated by the oceans. Journal of Geophysical Research, Vol, 97, no, C10, pp. 15467-15480.
  3. Chave, A.D., and Luther, D.S., 1990. Low-frequency, motionally induced electromagnetic fields in the ocean, J. Geophys. Res., 95, 7185–7200.
  4. Tyler, R.H., Mysak, L.A., Oberhuber, J.M., 1997. Electromagnetic fields generated by a three-dimensional global ocean circulation. Journal of Geophysical Research: Oceans, Vol, 102, no, C3, pp. 5531-5551.
  5. Flosadottir, A.H., Larsen, J.C., and Smith, J.T., 1997a. Motional induction in North Atlantic circulation models, J. Geophys. Res., 102, 10,353 –10,372.
  6. Flosadottir, A.H., Larsen, J.C., and Smith, J.T., 1997b. The relation of seafloor voltages to ocean transports in North Atlantic circulation models: Model results and practical considerations for transport monitoring, J. Phys. Oceanogr., 27, 1547– 1565.
  7. Tyler, R.H., Maus, S., and Lu¨hr, H., 2003. Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239– 240.
  8. Maus, S., and Kuvshinov, A., 2004. Ocean tidal signals in observatory and satellite magnetic measurements, Geophys. Res. Lett., 31, L15313,
  9. Vivier, F., Maier-Reimer, E., and Tyler, R.H., 2004. Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow? Geophys. Res. Lett., 31, L10306,
  10. Manoj, C., Kuvshinov, A., Maus, S., and Lühr, H., 2006. Ocean circulation generated magnetic signals. Earth Planets Space, 58(4), 429-437.
  11. Khalilabadi, M.R., and Hassantabar, B.S.H., 2016. Investigation of magnetic field fluctuations due to sea waves in the Strait of Hormuz, Journal of Research on Applied Geophysics, 2(1), 23-34.
  12. Irrgang, C., Saynisch, J., and Thomas, M. 2017. Utilizing oceanic electromagnetic induction to constrain an ocean general circulation model: A data assimilation twin experiment. J. Adv. Model. Earth Syst., 9(3), 1703-1720.
  13. Khalilabadi, M. R., and Shahmirzaee, H. 2017. Marine Magnetic Data Processing and Extracting Magnetic Anomaly. Hydrophysics, 3(1), 1-10.
  14. Irrgang, C., Saynisch-Wagner, J., Thomas, M, 2018. Depth of origin of ocean-circulation-induced magnetic signals. In Annales Geophysicae, Vol, 36, no, 1, pp. 167-180.
  15. Saynisch, J., Irrgang, C., and Thomas, M., 2018. On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals. J. Geophys. Res. Oceans, 123(3), 2305-2314.
  16. Velímský, J., Šachl, L., Martinec, Z., 2019. The global toroidal magnetic field generated in the Earth's oceans. Earth and Planetary Science Letters, Vol, 509, pp. 47-54.
  17. Šachl, L., Martinec, Z., Velímský, J., Irrgang, C., Petereit, J., Saynisch, J., Schnepf, N.R., 2019. Modelling of electromagnetic signatures of global ocean circulation: physical approximations and numerical issues. Earth Planets Space, 71(1), 58.
  18. Khalilabadi, M.R. 2022. Underwater Terrain and Gravity aided inertial navigation based on Kalman filter. International Journal of Coastal and Offshore Engineering, 5(3), 15-21.
  19. Kuvshinov, V., 2008. 3-D global induction in the oceans and solid Earth: recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric and oceanic origin. Surveys in Geophysics, Vol, 29, no, 2, pp. 139-186.
  20. Thébault, E., Finlay, C.C., Beggan, C.D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M., Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T., 2015. International Geomagnetic Reference Field: the 12th generation. Earth Planets Space, vol, 67, no, 1, pp. 79.
  21. Dostal, J., 2014. Modelling of the magnetic field induced by ocean circulation, Doctoral dissertation, Institut f¨ur Meteorologie Freie Universit¨at Berlin.
  22. Mandea, M., Thébault, E., 2007. The changing faces of the Earth's magnetic field: a glance at the magnetic lithospheric field, from local and regional scales to a planetary view. Published by Commission for the Geological Map of the World.
  23. Key, K., Constable, S., 2011. Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan. Physics of the Earth & Planetary Interiors, Vol, 184, no, 3-4, pp. 194-207.
  24. Fedorov, K., 2002. Formulas for converting the electrical conductivity of sea water into salinity with a digital temperature-salinity probe under average ocean conditions. Oceanology, 11(4), pp. 622-626.
  25. Apel, J. R., 1987. Principles of Ocean Physics, International Geophysics Series, Academic Press, San Diego, California, Vol. 38.
  26. Irrgang, C., Saynisch, J., Thomas, M., 2016. Impact of variable sea-water conductivity on motional induction simulated with an OGCM. Ocean Science Discussions, Vol, 12, no, 4, pp. 1869-1891.
  27. Thomas, M., Saynisch, J., Irrgang, C., 2016. Impact of variable sea-water conductivity on motional induction simulated with an OGCM. Ocean Science Discussions, Vol, 12, no, 4, pp. 1869-1891.
  28. Lilley, F.E., White, A., and Heinson, G.S., 2001. Earth’s magnetic field: Ocean contributions to vertical profiles in deep oceans, Geophys. J. Int., 147, 163 – 175.
  29. Glazman, R. E., Golubev, Y. N, 2005. Variability of the ocean‐induced magnetic field predicted at sea surface and at satellite altitudes. Journal of Geophysical Research: Oceans, Vol, 110, no, C12.
  30. Saynisch, J., Petereit, J., Irrgang, C., Kuvshinov, A., Tomas, M., 2016. Impact of climate variability on the tidal oceanic magnetic signal-A model based sensitivity study. Journal of Geophysical Research Oceans, Vol, 121, no, 8, pp. 5931-5941.
  31. Kuvshinov, A., Sabaka, , and Olsen, N.,2006. 3‐D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth's mantle, Earth Planets Space, 58, 417– 427.
  32. Kuvshinov, A., and Utada, H., 2010. Anomaly of the geomagnetic Sq variation in Japan: effect from 3-D subterranean structure or the ocean effect? Geophys. J. Int. 183, 1239–1247.
  33. Schnepf, R., Kuvshinov, A., and Sabaka, T., 2015. Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals? Geophys. Res. Lett., 42, 3233–3239,
  34. Rabinovich, A.B., and Eblé, M.C., 2015. Deep-Ocean Measurements of Tsunami Waves. Pure Appl. Geophys. 172, 3281–3312 (2015).
  35. Dordipour, I., Ghadiri, H., Bybordi, M., Siadat, H., Malakouti, M. J., Hussein, J. 2004. The use of saline water from the Caspian Sea for irrigation and barley production in northern Iran. 13th International Soil Conservation Organisation Conference – Brisbane.
  36. Lebedev, S., 2018. Climatic variability of water circulation in the Caspian Sea based on satellite altimetry data. International journal of remote sensing, Vol, 39, no, 13, pp. 4343-4359.
  37. Ibrayev, R.A., Özsoy, E., Schrum, C., and Sur, H.I., 2010. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction, Ocean Sci, 6(1), 311-329.
  38. Zereshkian, S., and Mansoury, D., 2018. Evaluation of Offshore Wind Power to Supply the Electric Power Required for Offshore Oil and Gas Platforms in the Caspian Sea, Journal, of Hydrophysics, 4(1): 57-68.
  39. Zereshkian, S., and Mansoury, D., 2020. Evaluation of ocean thermal energy for supplying the electric power of offshore oil and gas platforms, Journal of the Earth and Space Physics, Vol. 46, No. 2, 331-345.
  40. Baidin, S.S., Kosarev, A.N., 1986. The Caspian Sea. Hydrology and hydrochemistry, Moscow, Nauka, 261 pp (in Russian)
  41. Safari, M., Mansoury, D., & azarmsa, S. A. (2022). Grain-size characteristics of seafloor sediment and transport pattern in the Caspian Sea (Nowshahr and Babolsar coasts).International Journal of Coastal and Offshore Engineering, 7(1), 34-42.
  42. Blumberg, A.F., and Mellor, G.L., 1987. A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, Vol. 208, Heaps, N.S. (Ed.), American Geophysical Union,
  43. Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure submodel for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875.
  44. Smagorinsky, J., 1993. In: Galperin, B., Orszag, S. (Eds.), 1993. Large Eddy Simulations of Complex Engineering and Geophysical Flows, Cambridge University
  45. Korotenko, K., Mamedov, R., Kontar, A., and Korotenko, L., 2004. Particle tracking method in the approach for prediction of oil slick transport in the sea: modelling oil pollution resulting from river input, Journal of Marine Systems, vol. 48, p.159-170.
  46. Cherkesov, L.V., Shul’ga, T.Ya., 2018. Numerical Analysis of the Effect of Active Wind Speed and Direction on Circulation of Sea of Azov Water with and without Allowance for the Water Exchange through the Kerch Strait. Oceanology, 58, 19–27. DOI:1134/S0001437018010022
  47. Medvedev, I.P., Kulikov, E.A., and Fine, I.V., 2020. Numerical modelling of the Caspian Sea tides, Ocean Sci., 16, 209–219,
  48. Oey, L., Chang, Y. L., Lin, Y. C., Chang, M. C., Xu, F., & Lu, H. F., 2013. ATOP-The Advanced Taiwan Ocean Prediction System Based on the mpiPOM. Part 1: Model Descriptions, Analyses and Results. Terrestrial, Atmospheric & Oceanic Sciences24(1).
  49. Madala, R. V., and Piacsek, S. A., 1977. A semi-implicit numerical model for baroclinic oceans, J. Comput. Phys., 23, 167-178.
  50. Mellor, G. L., 1998. Users guide for a three-dimensional, primitive equation, numerical ocean model. Princeton, NJ: Program in Atmospheric and Oceanic Sciences, Princeton University.
  51. Kara A.B., Wallcraft A.J., Metzger E.J., Gunduz M., 2010. Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea. Continental Self Research, 30(10):1211-25.
  52. UNESCO-IHP-IOC-IAEA, 1996. Workshop on sea level rise and multidisciplinary studies of environmental processes in the Caspian region 9-12 May. Paris, Farance IOC workshop No 108.
  53. Mansoury, M., Sadri Nasab, M., and Akbari Nasab, M., 2015. Modeling of salinity and temperature field structure in the Caspian Sea using POM model, Hydrophysics, 1(1), 1-13. (Persian)
  54. Maus, S. Macmillan, S., Chernova, T., Choi, S., Dater, D., Golovkov, V., Lesur, V., Lowes, F., Lühr, H., Mai, W., Mclean, S., Oslen, N., Rother, M., Sabaka, T., Thomson, A., Zvereva, T., 2005. The 10th-Generation International Geomagnetic Reference Field, Geophys. J. Int., 161, 561–565.
  55. Maus, S., Manoj, C., Rauberg, J., Michaelis, I., and Lühr, H, 2010. NOAA/NGDC candidate
    models for the 11th generation International Geomagnetic Reference Field and the
    concurrent release of the 6th generation Pomme magnetic model, Earth Planets Space, 62 (2).
  56. Macmillan, S., and Finlay, C., 2010. The International Geomagnetic Reference Field. In: Mandea, M., Korte, M., (eds) Geomagnetic Observations and Model. IAGA Special Sopron Book Series, vol 5. Springer, Dordrecht.
  57. Finlay, C.C., Maus, S., Beggan, C.D., Bondar, T.N., Chambodut, A., Chernova, T.A., Chulliat, A., Golovkov, V.P., Hamilton, B., Hamoudi, M., Holme, R., Hulot, G., Kuang, W., Langlais, B., Lesur, V., Lowes, F. J., Luhr, H., Macmillan, S., Mandea, M., Michaelis, I., Olsen, N., Rauberg, J., Rother, M., Sabaka, T. J., Tangborn, A., Tøffner-Clausen, L., Thebault, E., Thomson, A. W. P., Wardinski, I., Zvereva, T. I, 2010. International geomagnetic reference field: the eleventh generation. Geophysical Journal International, Vol, 183, no, 3, pp. 1216-1230.