Integration of Geographical Information System and Tsunami generation/propagation models in the Makran region (North of the Arabian Sea)

Author

Iranian National Institute of Oceangraphy and Atmospheric Science

Abstract

Two numerical models of tsunami generation/propagation have been run in the Makran region. These models are one of the necessary components in the warning systems in this region. The outputs of these models are not in regular international data model standards. In order to get the best result from these models, the models’ outputs must be managed in a database system. An ideal data management system for tsunami warning system has three essential parts included: data convertor, Geographical Information System (GIS) and Relational Database Management System (RDBMS). The schematics and properties of the proposed data management system have been shown in this paper. 3D, spatial, temporal and statistical analysis of tsunami models data exported to the proposed system based on GIS capabilities and data processing routines. Some examples of data analysis of tsunami propagation in the Makran region (north of the Arabian Sea) have been shown.

Keywords


1- Bernard, E.N., F.I. González, and Titov V.V., (2005). The tsunameter and real-time tsunami forecasting. Chikyu Monthly, 27, 210–215.
2- Titov, V.V., and Gonzalez F.I., (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112, 1-11.
3- Bernard, E.N., (2005). The U.S. National Tsunami Hazard Mitigation Program: A successful state–federal partnership. Nat. Hazards, Special Issue, U.S. National Tsunami Hazard Mitigation Program, 35, 5–24.
4- Harmancioglu, N.B., Alpaslan, M.N. and Ozkul, S.D., (1997). Conclusions and recommendations, Integrated approach to environmental data management systems, proceedings of the NATO advanced research workshop on integrated approach to environmental data management systems, Sept. 16-20, Izmir, Turkey, Kluwer academic publishers, NATO ASI Series, 2. Environment, 31, 35-48.
5- Harmancioglu, N.B., Alpaslan, M.N., Ozkul, S.D. and Singh, V.P., (1997). Integrated approach to environmental data management systems, proceedings of the NATO advanced research workshop on integrated approach to environmental data management systems, Sept. 16-20, Izmir, Turkey, Kluwer academic publishers, NATO ASI Series, 2. Environment, 31, 5-46.
6- Santos,M., (1997). Data management and the European :union: information policy, Integrated approach to environmental data management systems, proceedings of the NATO advanced research workshop on integrated approach to environmental data management systems, Sept. 16-20, Izmir, Turkey, Kluwer academic publishers, NATO ASI Series, 2. Environment, vol. 31, pp., 35-48.
7- Young, I.R., (1999). Wind generated ocean waves. (Elsevier), 288 pp.
8- Singh, V.P., (1995). Computer models of watershed hydrology, water resources publications, (Littleton), 230 pp.
9- Berninghausen, (1996). W.H., Tsunamis and Seismic Seiches reported from regions adjacent to the Indian Ocean, BSSA, 56, 19-66.
10- Mokhtari, M. and Farahbod, A.M., (2005). Tsunami Occurrence in the Makran Region. Tsunami Seminar, Tehran, 26 February.
11- Qureshi R. M., (2006). Vulnerability of Pakistan Coast to Tsunami. Possible Applications/Role of Nuclear Techniques RCARO Workshop, 20 - 24 February, Daejon, Korea.
12- Pararas-Carayannis, G., (2006). The Earthquake and Tsunami of 28 November 1945 in Southern Pakistan, http://drgeorgepc.com/Tsunami1945Pakistan.html.
13- Quittmeyer, R.C., and Jacob, K.H., (1997). Historical and Modern Seismicity of Pakistan, Afghanistan, N.W. India and S.E. Iran, Bulletin of the Seismological Society of America, 69/3, 773-823.
14- Closs, H., Bungenstock, H., Hinz, K., (1969). Ergebnisse seismischer Untersuchungen im nrdlichen Arabischen Meer: ein Beitrag zur internationalen Indischen Ozean Expedition, GEOMAR Rep., 62, 292 pp.
15- White, R. S., Louden, K. E., (1983). The Makran Continental Margin: Structure of a Thickly Sedimented Convergent Plate Boundary, Am. Ass. Petrol. Geol., 34, 499-518.
16- Kopp C., Fruehn J., Flueh,E. R., Reichert, C., Kukowski N., Bialas J. and Klaeschen. D., (2000). Structure of the Makran subduction zone from wide-angle and reflection seismic data. Proceedings, 8th International Symposium on Deep Seismic Profiling of the Continents and Their Margins, 171-191.
17- Fruehn, J., White, R. S. and Minshull, T. A., (1997). Internal deformation and compaction of the Makran accretionary wedge, Terra Nova, 9, 101-104.
18- Platt, J. P., Leggett, J. K., Young, J., Raza, H. and Alam, S., (1985). Large-scale sediment underplating in the Makran accretionary prism, Southwest Pakistan, Geology, 13, 507-511.
19- Regard V. Bellier O., Thomas J.-C., Abbassi M.R., Mercier J. L., Shabanian E., Feghhi Kh., Soleymani Sh., Bonnet S., Bourlès D. L., Braucher R., and J. Martinod, (2003). Tectonics of a Lateral Transition Between Subduction and Collision:The Zagros-Makran Transfer Deformation Zone (SE IRAN), Geophysical Research Abstracts, 5, 200-210.
 20- GEOMAR, (2000). Germany, the University of Cambridge and the National Institute of Oceanography, Pakistan, - Cruise (SONNE-123), 1997- 2000.
 21- Hutchinson, I., Louden, K. E., White, R. S., (1981). Heat flow and age of the Gulf of Oman, Earth Planet. Sci. Lett., 56, 252-262.
 22- Imamura, F. and Hashi, k., (2003). Re-examination of the Tsunami Source of the 1998 Papua New Guinea Earthquake Tsunami, Pure Appl. Geophys, 160, 2071-2086.
 23- Satake, K. and Tanioka, Y., (2003). The July 1998 New Guinea Earthquake: Mechanism and Quantification of Unusual Tsunami Generation, Pure Appl. Geophys., 160, 1087-2118.
 24- Lynett, P.J., Borrero, J.C., Liu, P.L.-F., and Synolakis, C.E., (2003). Field Survey and Numerical Simulations: A review of the 1998 Papua New Guinea Tsunami, Pure Appl. Geophys., 160, 2119-2146.
25- Imamura, F., Yalciner, A. and Ozyurt, G., (2006). TSUNAMI MODELLING MANUAL. The JCOMM/IODE Combined Modeling and Data Management Training Workshop Jamboree – II, Oostende, Belgium, 9 – 14 October.
26- Annunziato, A., Best, C., (2005). THE TSUNAMI EVENT ANALYSES AND MODELS. Institute for the Protection and Security of the Citizen Joint Research Centre, European Commission, Inter. Report.
27- Titov, V.V., González F.I., Bernard E.N., Eble M.C., Mofjeld, H.O., Newman J.C., and Venturato A.J., (2005). U.S. National Tsunami Hazard Mitigation Program, Nat. Hazards, , 35, 41–58.
28- Yalciner, A.C., Pelinovsky E., Zaytsev, A., Ozer C., Ozyurt G., Kurkin A., (2006). USER MANUAL OF TSUNAMI SIMULATION–VISUALIZATION SOFTWARE AVI-NAMI (version 2.0) for BEGINNERS. The JCOMM/IODE Combined Modeling and Data Management Training Workshop Jamboree – II, Oostende, Belgium, 9 – 14 October.
29- Kanbua, W., (2006). Siam Tsunami Propagation Simulator (SiTPros) model. The JCOMM/IODE Combined Modeling and Data Management Training Workshop Jamboree – II, Oostende, Belgium, 9 – 14 October.
 30- Shuto, N., Goto, C., Imamura, F., (1990). Numerical simulation as a means of warning for near field tsunamis, Coastal. Engineering in Japan, 33, 173-193.
31- Goto, C. and Ogawa, Y., (1991). Numerical Method of Tsunami Simulation with the Leap Frog Scheme, TIME Project Report, 220 pp.
32- Yalciner, A.C., Kanbua, W., Moradi, M., Sojisuporn, P. and Kirugara, D., (2006). SUMMARY REPORT FOR JAMBOREE-II ON NUMERICAL MODELING TSUNAMI GENERATION AND PROPAGATION. The JCOMM/IODE Combined Modeling and Data Management Training Workshop Jamboree – II, Oostende, Belgium, 9 – 14 October.
33- Carr, J., (2002) Data visualization in the geoscinces, Prentice Hall Inc., New Jersey, 266 pp.
34- Jeffy, A.H., Mary, B., Prescot, F.R. and McFadden, R. (2002). Modern database management. (Prentice Hall, New York, Sixth edition), 638 pp.