Effects of Hybrid Fiber on Flexural Behavior of Green RC Beams in Oman Sea


Faculty member of Chabahar maritime university


Steel rebar corrosion because of the cracks in marine reinforced concrete (RC) structures is the main type of deterioration that leads to decrease the load-carrying capacity, ductility, and service life. The use of different fibers such as steel fiber (SF), glass fiber (GF), and polypropylene fiber (PF) in RC beams can reduce the cracks and increase the load-bearing capacity and toughness of RC beams. Moreover, it seems that RC beams containing hybrid of SF, GF, and PF have been higher flexural capacity and toughness rather than RC composites with only one type of fiber. However, the role of mono or hybrid fiber will be depended on environmental conditions. Consequently, load-bearing capacity and toughness of Green RC beam with 15% metakaolin (MK) as a cement replacement, containing SF, PF, GF, (S+P)F, and (S+G)F as fibers, at 28, 90, and 180 days in tidal zone of Oman Sea were determined. The dimension of the beams was 200×200×750 mm. The fibers included macro and microfibers. Macro fiber was steel with 50 mm length. Microfibers were GF and PF with 12 mm length. Results indicated that by the addition of PF, GF, SF, (S+P)F, and (S+G)F to RC beams the load-bearing capacity and toughness are increased up to 41%. Meanwhile, the hybrid effect of fiber was more than the mono one.


  1. 5. References [1] B. V. Venkatarama Reddy and K. S. Jagadish, “Embodied energy of common and alternative building materials and technologies,” Energy Build., vol. 35, no. 2, pp. 129–137, 2003, doi: 10.1016/S0378-7788(01)00141-4. [2] J. S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino, and E. M. Gartner, “Sustainable development and climate change initiatives,” Cem. Concr. Res., vol. 38, no. 2, pp. 115–127, 2008, doi: 10.1016/j.cemconres.2007.09.008. [3] A. M. Rashad and S. R. Zeedan, “The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load,” Constr. Build. Mater., vol. 25, no. 7, pp. 3098–3107, 2011, doi: 10.1016/j.conbuildmat.2010.12.044. [4] S. S. Park and H. Y. Kang, “Characterization of fly ash-pastes synthesized at different activator conditions,” Korean J. Chem. Eng., vol. 25, no. 1, pp. 78–83, 2008, doi: 10.1007/s11814-008-0013-6. [5] A. M. Rashad, “Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview,” Constr. Build. Mater., vol. 41, pp. 303–318, 2013, doi: 10.1016/j.conbuildmat.2012.12.001. [6] B. Kim, A. J. Boyd, and J. Y. Lee, “Durability performance of fiber-reinforced concrete in severe environments,” J. Compos. Mater., vol. 45, no. 23, pp. 2379–2389, 2011, doi: 10.1177/0021998311401089. [7] B. Kim, A. J. Boyd, H. S. Kim, and S. H. Lee, “Steel and synthetic types of fibre reinforced concrete exposed to chemical erosion,” Constr. Build. Mater., vol. 93, pp. 720–728, 2015, doi: 10.1016/j.conbuildmat.2015.06.023. [8] N. Ganesan, P. V. Indira, and M. V. Sabeena, “Bond stress slip response of bars embedded in hybrid fibre reinforced high performance concrete,” Constr. Build. Mater., vol. 50, pp. 108–115, 2014, doi: 10.1016/j.conbuildmat.2013.09.032. [9] P. Rashiddadash, A. A. Ramezanianpour, and M. Mahdikhani, “Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice,” Constr. Build. Mater., vol. 51, pp. 313–320, Jan. 2014, doi: 10.1016/j.conbuildmat.2013.10.087. [10] E. R. Silva, J. F. J. Coelho, and J. C. Bordado, “Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology,” Constr. Build. Mater., vol. 40, pp. 473–480, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2012.11.017. [11] K. T. Soe, Y. X. Zhang, and L. C. Zhang, “Material properties of a new hybrid fibre-reinforced engineered cementitious composite,” Constr. Build. Mater., vol. 43, pp. 399–407, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.02.021. [12] D. E. Nassani, “Experimental and analytical study of the mechanical and flexural behavior of hybrid fiber concretes,” Structures, vol. 28, no. September, pp. 1746–1755, 2020, doi: 10.1016/j.istruc.2020.10.014. [13] M. Glavind and T. Aarre, “High-Strength Concrete with Increased Fracture-Toughness,” MRS Proc., vol. 211, p. 39, Feb. 1990, doi: 10.1557/PROC-211-39. [14] E. S. Larsen and H. Krenchel, “Durability of FRC-Materials,” MRS Proc., vol. 211, p. 119, Feb. 1990, doi: 10.1557/PROC-211-119. [15] A. Bentur, S. Diamondt, and S. Diamond, “Effect of ageing of glass fibre reinforced cement on the response of an advancing crack on intersecting a glass fibre strand,” Int. J. Cem. Compos. Light. Concr., vol. 8, no. 4, pp. 213–222, 1986. [16] N. Banthia and R. Gupta, “Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices,” Mater. Struct., vol. 37, no. 10, pp. 707–716, 2004. [17] H. Mihashi, S. F. U. Ahmed, and A. Kobayakawa, “Corrosion of Reinforcing Steel in Fiber Reinforced Cementitious Composites,” J. Adv. Concr. Technol., vol. 9, no. 2, pp. 159–167, 2011, doi: 10.3151/jact.9.159. [18] A. Caggiano, S. Gambarelli, E. Martinelli, N. Nisticò, and M. Pepe, “Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete,” Constr. Build. Mater., vol. 125, pp. 1035–1043, 2016, doi: 10.1016/j.conbuildmat.2016.08.068. [19] L. Huang, Y. Chi, L. Xu, P. Chen, and A. Zhang, “Local bond performance of rebar embedded in steel-polypropylene hybrid fiber reinforced concrete under monotonic and cyclic loading,” Constr. Build. Mater., vol. 103, pp. 77–92, 2016, doi: 10.1016/j.conbuildmat.2015.11.040. [20] L. Huang, L. Xu, Y. Chi, F. Deng, and A. Zhang, “Bond strength of deformed bar embedded in steel-polypropylene hybrid fiber reinforced concrete,” Constr. Build. Mater., vol. 218, pp. 176–192, Sep. 2019, doi: 10.1016/j.conbuildmat.2019.05.096. [21] J.-P. Won, C.-G. Park, H.-H. Kim, S.-W. Lee, and C.-I. Jang, “Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete,” Compos. Part B-engineering - Compos PART B-ENG, vol. 39, pp. 747–755, Jul. 2008, doi: 10.1016/j.compositesb.2007.11.005. [22] D.-Y. Yoo, H.-O. Shin, J.-M. Yang, and Y.-S. Yoon, “Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers,” Compos. Part B Eng., vol. 58, pp. 122–133, 2014, doi: https://doi.org/10.1016/j.compositesb.2013.10.081. [23] J. Li, X. Gao, and P. Zhang, “Experimental investigation on the bond of reinforcing bars in high performance concrete under cyclic loading,” Mater. Struct., vol. 40, no. 10, pp. 1027–1044, 2007, doi: 10.1617/s11527-006-9201-1. [24] S. Gali and K. V. L. Subramaniam, “Cohesive stress transfer and shear capacity enhancements in hybrid steel and macro-polypropylene fiber reinforced concrete,” Theor. Appl. Fract. Mech., vol. 103, no. December 2018, p. 102250, 2019, doi: 10.1016/j.tafmec.2019.102250. [25] I. Sadrinejad, M. M. Ranjbar, and R. Madandoust, “Influence of hybrid fibers on serviceability of RC beams under loading and steel corrosion,” Constr. Build. Mater., vol. 184, pp. 502–514, 2018, doi: 10.1016/j.conbuildmat.2018.07.024. [26] J. Liu, Y. Jia, and J. Wang, “Calculation of chloride ion diffusion in glass and polypropylene fiber-reinforced concrete,” Constr. Build. Mater., vol. 215, pp. 875–885, 2019, doi: 10.1016/j.conbuildmat.2019.04.246. [27] S. R. R. T. Prathipati, I. Khan, C. B. K. Rao, and H. Kasagani, “A study on the fiber distribution characteristics of hybrid fiber reinforced high strength concrete with steel and glass fibers,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.07.341. [28] C. C. Test, T. Drilled, C. Concrete, and S. T. Panels, “C 1609/C 1609M-05 Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete ( Using Beam With Third-Point Loading ) 1,” Astm, vol. i, no. C 1609/C 1609M-05, pp. 1–8, 2013, doi: 10.1520/C1609. [29] P. Hughes et al., “Microscopic examination of a new mechanism for accelerated degradation of synthetic fibre reinforced marine concrete,” Constr. Build. Mater., vol. 41, pp. 498–504, 2013, doi: 10.1016/j.conbuildmat.2012.12.022. [30] M. Sappakittipakorn and N. Banthia, “Corrosion of Rebar and Role of Fiber Reinforced Concrete,” J. Test. Eval., vol. 40, no. 1, pp. 127–136, Jan. 2012, doi: 10.1520/JTE103873. [31] C. G. Berrocal, I. Löfgren, K. Lundgren, and L. Tang, “Corrosion initiation in cracked fibre reinforced concrete: Influence of crack width, fibre type and loading conditions,” Corros. Sci., vol. 98, pp. 128–139, 2015, doi: https://doi.org/10.1016/j.corsci.2015.05.021. [32] J. Blunt, G. Jen, and C. P. Ostertag, “Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete,” Corros. Sci., vol. 92, pp. 182–191, 2015, doi: https://doi.org/10.1016/j.corsci.2014.12.003. [33] R. H. Haddad and A. M. Ashteyate, “Role of synthetic fibers in delaying steel corrosion cracks and improving bond with concrete,” Can. J. Civ. Eng., vol. 28, no. 5, pp. 787–793, Oct. 2001, doi: 10.1139/l01-037. [34] C. G. Berrocal, I. Fernandez, K. Lundgren, and I. Löfgren, “Corrosion-induced cracking and bond behaviour of corroded reinforcement bars in SFRC,” Compos. Part B Eng., vol. 113, pp. 123–137, 2017, doi: https://doi.org/10.1016/j.compositesb.2017.01.020. [35] A. Larena and G. Pinto, “The effect of surface roughness and crystallinity on the light scattering of polyethylene tubular blown films,” Polym. Eng. Sci., vol. 33, no. 12, pp. 742–747, Jun. 1993, doi: https://doi.org/10.1002/pen.760331204. [36] N. Ranjbar and M. Zhang, “Fiber-reinforced geopolymer composites: A review,” Cem. Concr. Compos., vol. 107, p. 103498, 2020, doi: 10.1016/j.cemconcomp.2019.103498. [37] T. Simões, H. Costa, D. Dias-da-Costa, and E. Júlio, “Influence of fibres on the mechanical behaviour of fibre reinforced concrete matrixes,” Constr. Build. Mater., vol. 137, pp. 548–556, 2017, doi: 10.1016/j.conbuildmat.2017.01.104. [38] Z. Sun and Q. Xu, “Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete,” Mater. Sci. Eng. A, vol. 527, no. 1–2, pp. 198–204, 2009, doi: 10.1016/j.msea.2009.07.056. [39] S. Marikunte, C. Aldea, and S. P. Shah, “Durability of glass fiber reinforced cement composites,” Adv. Cem. Based Mater., vol. 5, no. 3–4, pp. 100–108, 1997, doi: 10.1016/S1065-7355(97)00003-5. [40] P. J. M. Bartos and W. Zhu, “Effect of microsilica and acrylic polymer treatment on the ageing of GRC,” Cem. Concr. Compos., vol. 18, no. 1, pp. 31–39, 1996, doi: https://doi.org/10.1016/0958-9465(95)00041-0. [41] S. Marikunte, C. Aldea, and S. P. Shah, “Durability of glass fiber reinforced cement composites:: Effect of silica fume and metakaolin,” Adv. Cem. Based Mater., vol. 5, no. 3, pp. 100–108, 1997, doi: https://doi.org/10.1016/S1065-7355(97)00003-5. [42] A. Enfedaque, L. S. Paradela, and V. Sánchez-Gálvez, “An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC),” Constr. Build. Mater., vol. 27, no. 1, pp. 425–431, 2012, doi: https://doi.org/10.1016/j.conbuildmat.2011.07.025. [43] A. Enfedaque, D. Cendón, F. Gálvez, and V. Sánchez-Gálvez, “Analysis of glass fiber reinforced cement (GRC) fracture surfaces,” Constr. Build. Mater. - CONSTR BUILD MATER, vol. 24, pp. 1302–1308, Jul. 2010, doi: 10.1016/j.conbuildmat.2009.12.005. [44] S. Chao, A. Naaman, and G. Parra-Montesinos, “Bond Behavior of Reinforcing Bars in Tensile Strain-Hardening Fiber-Reinforced Cement Composites,” Aci Struct. J., vol. 106, pp. 897–906, 2009. [45] N. Banthia and R. Gupta, “Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices,” Mater. Struct., vol. 37, no. 10, pp. 707–716, 2004, doi: 10.1007/BF02480516. [46] N. Banthia and M. Sappakittipakorn, “Toughness enhancement in steel fiber reinforced concrete through fiber hybridization,” Cem. Concr. Res., vol. 37, pp. 1366–1372, Sep. 2007, doi: 10.1016/j.cemconres.2007.05.005. [47] J.-L. Granju and S. Ullah Balouch, “Corrosion of steel fibre reinforced concrete from the cracks,” Cem. Concr. Res., vol. 35, no. 3, pp. 572–577, 2005, doi: https://doi.org/10.1016/j.cemconres.2004.06.032. [48] H. Mihashi, S. F. U. Ahmed, and A. Kobayakawa, “Corrosion of Reinforcing Steel in Fiber Reinforced Cementitious Composites,” J. Adv. Concr. Technol., vol. 9, no. 2, pp. 159–167, 2011, doi: 10.3151/jact.9.159. [49] D.-Y. Yoo, N. Banthia, J.-M. Yang, and Y.-S. Yoon, “Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams,” Constr. Build. Mater., vol. 121, pp. 676–685, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.06.040. [50] S. Abbas, A. M. Soliman, and M. L. Nehdi, “Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages,” Constr. Build. Mater., vol. 75, pp. 429–441, 2015, doi: https://doi.org/10.1016/j.conbuildmat.2014.11.017. [51] A. Bentur and S. Mindess, Fibre reinforced cementitious composites. London; New York: Elsevier Applied Science, 1990. [52] A. Bentur and S. Mindess, “Introduction,” Fibre Reinf. Cem. Compos., pp. 21–30, 2020, doi: 10.1201/9781482267747-8. [53] D. Winslow and D. Liu, “The pore structure of paste in concrete,” Cem. Concr. Res., vol. 20, no. 2, pp. 227–235, 1990, doi: 10.1016/0008-8846(90)90075-9. [54] J. F. Lamond and J. H. Pielert, Eds., No Title. West Conshohocken, PA: ASTM International, 2006. [55] N. Banthia and M. Sappakittipakorn, “Toughness enhancement in steel fiber reinforced concrete through fiber hybridization,” Cem. Concr. Res., vol. 37, no. 9, pp. 1366–1372, 2007, doi: 10.1016/j.cemconres.2007.05.005. [56] M. Saffari Tabalvandani, H. A. Biria, and P. Kaafi Siaestalkhi, “Glass Fiber Reinforced Concrete Exclusive Assets and Applications in Construction,” no. January, 2012.