Application of tuned liquid column damper for motion reduction of semisubmersible platforms


Tarbiat Modares University


Incorporation of a tuned liquid column damper (TLCD) into a semisubmersible drilling platform is numerically investigated in this paper. First, a governing equation for liquid fluctuation in the TLCD is derived for the planar motion of the TLCD in conjunction with the motion of the platform. Then, the real-time response of the platform under irregular waves is analyzed using radiation/diffraction theory in which TLCD loading is exerted on the platform at each time-step. This facilitates capture of the difference-frequency and sum frequency second order wave forces and the low-frequency motion of the platform. The results show that the effect of the rotational motion of the platform on the TLCD is significant and the TLCD has a reciprocal effect on this rotational motion of the platform. It is shown that the TLCD decreases the low-frequency motion of the platform and has no considerable effect on the wave-frequency motion. Also, the sensitivity of the platform motion to the main specifications of the TLCD is assessed by a parametric study. 


  1. 1- G.F. Clauss, L. Birk, (1996), Hydrodynamic shape optimization of large offshore structures, Appl. Ocean Res., Vol.18, p.157-171. [DOI:10.1016/S0141-1187(96)00028-4]
  2. M. Adjami, M. Shafieefar, (2008), Hydrodynamic shape optimization of semi-submersibles using a genetic algorithm, J. Mar. Sci. Technol., Vol.16, p.109-122.
  3. J.Y. Lee, S.J. Lim, (2008), Hull Form Optimization of a Tension-Leg Platform Based on Coupled Analysis, Proc. Eighteenth Int. Offshore Polar Eng. Conf., Vol.8, p.100-107.
  4. M. Muskulus, S. Schafhirt, (2014), Design optimization of wind turbine support structures-A review, J. Ocean Wind Energy, Vol.1, p.12-22.
  5. M. Hall, B. Buckham, C. Crawford, (2014), Hydrodynamics-based floating wind turbine support platform optimization: A basis function approach, Renew. Energy, Vol.66, p.559-569. [DOI:10.1016/j.renene.2013.12.035]
  6. M. Shafieefar, A. Rezvani, (2007), Mooring optimization of floating platforms using a genetic algorithm, Ocean Eng., Vol.34, p.1413-1421. [DOI:10.1016/j.oceaneng.2006.10.005]
  7. M. Mirzaei, (2014), Mooring Pattern Optimization Using A Genetic Algorithm, J. Teknol., Vol.2, p.189-193. [DOI:10.11113/jt.v66.2519]
  8. N. Ren, Y. Li, J. Ou, (2012), The effect of additional mooring chains on the motion performance of a floating wind turbine with a tension leg platform, Energies, Vol.5, p.1135-1149. [DOI:10.3390/en5041135]
  9. M. Brommundt, L. Krause, K. Merz, M. Muskulus, (2012), Mooring system optimization for floating wind turbines using frequency domain analysis, Energy Procedia, Vol.24, p.289-296. [DOI:10.1016/j.egypro.2012.06.111]
  10. R. Kandasamy, F. Cui, N. Townsend, C.C. Foo, J. Guo, A. Shenoi, Y. Xiong, (2016), A review of vibration control methods for marine offshore structures, Ocean Eng., Vol.127, p.279-297. [DOI:10.1016/j.oceaneng.2016.10.001]
  11. A. Di Matteo, A. Pirrotta, F. Lo Iacono, G. Navarra, (2012), The Control Performance of TLCD and TMD : Experimental Investigation, 5th Eur. Conf. Struct. Control, p.1-9.
  12. H. Gao, K.C.S. Kwok, B. Samali, (1997), Optimization of tuned liquid column dampers, Eng. Struct., Vol.19, p.476-486. [DOI:10.1016/S0141-0296(96)00099-5]
  13. A. Kareem, T. Kijewski, Y. Tamura, (2007), Mitigation of Motion of Tall Buildings with Specific Examples of Recent Applications, Wind Struct., p.201-251. [DOI:10.12989/was.1999.2.3.201]
  14. B. Samali, K.C.S. Kwok, D. Tapner, Vibration control of structures by tuned liquid column dampers, in: Proc., IABSE, 14th Congr., 1992: pp. 461-466.
  15. A. Ghosh, B. Basu, (2004), Seismic vibration control of short period structures using the liquid column damper, Eng. Struct., Vol.26, p.1905-1913. [DOI:10.1016/j.engstruct.2004.07.001]
  16. T. Balendra, C.M. Wang, G. Rakesh, (1999), Effectiveness of TLCD on various structural systems, Eng. Struct., Vol.21, p.291-305. [DOI:10.1016/S0141-0296(97)00156-9]
  17. C.C. Chang, (1999), Mass dampers and their optimal designs for building vibration control, Eng. Struct., Vol.21, p.454-463. [DOI:10.1016/S0141-0296(97)00213-7]
  18. J.C. Wu, M.H. Shih, Y.Y. Lin, Y.C. Shen, (2005), Design guidelines for tuned liquid column damper for structures responding to wind, Eng. Struct., Vol.27, p.1893-1905. [DOI:10.1016/j.engstruct.2005.05.009]
  19. H.H. Lee, S.H. Wong, R.S. Lee, (2006), Response mitigation on the offshore floating platform system with tuned liquid column damper, Ocean Eng., Vol.33, p.1118-1142. [DOI:10.1016/j.oceaneng.2005.06.008]
  20. F. Sakai, S. Takaeda, T. Tamaki, Tuned liquid column damper-new type device for suppression of building vibration, in: Int. Conf. High-Rise Build., 1989: pp. 926-31.
  21. X. Zeng, Y. Yu, L. Zhang, Q. Liu, H. Wu, (2014), A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms, Energies, Vol.8, p.111-132. [DOI:10.3390/en8010111]
  22. H.H. Lee, H.H. Juang, (2012), Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD, Smart Struct. Syst., Vol.9, p.71-104. [DOI:10.12989/sss.2012.9.1.071]
  23. C. Coudurier, O. Lepreux, N. Petit, (2018), Modelling of a tuned liquid multi-column damper. Application to floating wind turbine for improved robustness against wave incidence, Ocean Eng., Vol.165, p.277-292. [DOI:10.1016/j.oceaneng.2018.03.033]
  24. C. Holden, T. Perez, T.I. Fossen, (2011), A Lagrangian approach to nonlinear modeling of anti-roll tanks, Ocean Eng., Vol.38, p.341-359. [DOI:10.1016/j.oceaneng.2010.11.012]
  25. M. Shadman, A. Akbarpour, (2012), OMAE2012-83330, p.1-7.
  26. M. Shahrabi, K. Bargi, (2019), Enhancement the Fatigue Life of Floating Breakwater Mooring System Using Tuned Liquid Column Damper, Lat. Am. J. Solids Struct., Vol.16,. [DOI:10.1590/1679-78255692]
  27. M.J. Hochrainer, (2005), Tuned liquid column damper for structural control, Acta Mech., Vol.175, p.57-76. [DOI:10.1007/s00707-004-0193-z]
  28. S.D. Xue, J.M. Ko, Y.L. Xu, (2000), Tuned liquid column damper for suppressing pitching motion of structures, Eng. Struct., Vol.22, p.1538-1551. [DOI:10.1016/S0141-0296(99)00099-1]
  29. X. Suduo, J.M. Ko, Y.L. Xu, (2002), Wind-induced vibration control of bridges using liquid column damper, Vol.1, p.271-280. [DOI:10.1007/s11803-002-0072-3]
  30. A.A. Taflanidis, D.C. Angelides, G.C. Manos, (2005), Optimal design and performance of liquid column mass dampers for rotational vibration control of structures under white noise excitation, Eng. Struct., Vol.27, p.524-534. [DOI:10.1016/j.engstruct.2004.11.011]
  31. H. Sabziyan, H. Ghassemi, F. Azarsina, S. Kazemi, (2014), Effect of Mooring Lines Pattern in a Semi-submersible Platform at Surge and Sway Movements, J. Ocean Res., Vol.2, p.17-22.
  32. C.C. Chang, C.T. Hsu, (1998), Control performance of liquid column vibration absorbers, Eng. Struct., Vol.20, p.580-586. [DOI:10.1016/S0141-0296(97)00062-X]
  33. G.F. Clauss, C.E. Schmittner, K. Stutz, (2002), Time-domain investigation of a semisubmersible in rogue waves, 21st Int. Conf. Offshore Mech. Arct. Eng.,. [DOI:10.1115/OMAE2002-28450]
  34. N.M. Newmark, (1959), A method of computation for structural dynamics, J. Eng. Mech. Div., Vol.85, p.67-94.
  35. M. López, F. Taveira-Pinto, P. Rosa-Santos, (2017), Numerical modelling of the CECO wave energy converter, Renew. Energy, Vol.113, p.202-210. [DOI:10.1016/j.renene.2017.05.066]
  36. K.C. Subrata, S. Cliakrabarti, Handbook of offshore engineering, 2005.
  37. ANSYS, Aqwa Theory Manual, 2013.
  38. A.P.I. RP2A-WSD, Recommended practice for planning, designing and constructing fixed offshore platforms--working stress design--, 2014.
  39. M. Keddam, (2002), Offshore Hydromechanics, Electrochim. Acta, Vol.47, p.1503-1504. [DOI:10.1016/S0013-4686(01)00879-9]
  40. T. Chatterjee, S. Chakraborty, (2014), Vibration mitigation of structures subjected to random wave forces by liquid column dampers, Ocean Eng., Vol.87, p.151-161. [DOI:10.1016/j.oceaneng.2014.05.004]
  41. B. Li, K. Liu, G. Yan, J. Ou, (2011), Hydrodynamic comparison of a semi-submersible, TLP, and Spar: Numerical study in the South China Sea environment, J. Mar. Sci. Appl., Vol.10, p.306-314. [DOI:10.1007/s11804-011-1073-2]