A Study on the Structural and Formation of the Low-Level Jet Stream over the Northern Persian Gulf (Case study on sinking the Behbahan cargo vessel)


Atmospheric Science and Meteorological Research Center (ASMERC)


A strong low level jet (LLJ) in the northern region of the Persian Gulf (PG) observed on 5th Jun 2020 that sank the Behbahan cargo vessel. In this article, we have used the WRF-V3 model and reanalysis ERA5 data to study the vertical structure, diurnal variation and intensity of the LLJs. The aimed topography’s region, the pressure gradient and the land-sea breeze are the essential key factors in analyzing the diurnal variation of the LLJ over the PG that is known as the Shamal wind. The low terrain height in the northern of the PG and Zagros Mountains channelized the northwest winds and increased the pressure gradient that increased the wind speed. The decreasing friction over the PG during nighttime and the differences in temperature and specific heat capacity between water and land cause an increase in the LLJ intensity. The LLJ’s core 22-24 ms-1 was located over the study region in 925hPa on 4th and 5th June at 18 and 00 UTC respectively. Thereafter core’s wind speed decreased to 10-14 ms-1at 12UTC on 5th June. The mix-down of momentum from the LLJ level to the surface caused an increase in wind speed and wave height over the PG which sank the Behbahan cargo vessel at early morning of 5th June.  The LLJ at some regions like Kuwait formed at lower heights (under 950 hPa) and at the other points LLJ formed at levels upper than 950 hPa during nighttime of 4th Jun to afternoon of 5th Jun.


  1. Bonner, W. D., (1968), Climatology of the low level jet. Mon. Wea.Rev., Vol. 96, pp.833-850. https://doi.org/10.1175/1520-0493(1968)0962.0.CO;2 [DOI:10.1175/1520-0493(1968)0962.0.CO;2]
  2. Doyle, J. D., Warner, T. T., (1993), A three-dimensional numerical investigation of a Carolina coastal low-level jet during GALE IOP. Mon Wea Rev, Vol. 121(4), pp.1030-1047. https://doi.org/10.1175/1520-0493(1993)1212.0.CO;2 [DOI:10.1175/1520-0493(1993)1212.0.CO;2]
  3. Whiteman, C. D., Bian, X., Zhong, S., (1997), Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains. J Appl Meteor, Vol. 36(10), pp.1363-1376. https://doi.org/10.1175/1520-0450(1997)0362.0.CO;2 [DOI:10.1175/1520-0450(1997)0362.0.CO;2]
  4. Colle, B. A., Novak, D. R., (2010), The New York Bight jet: climatology and dynamical evolution. Mon Wea Rev, Vol. 138(6), pp.2385-2404. [DOI:10.1175/2009MWR3231.1]
  5. Rife, D. L., Pinto, J. O., Monaghan, A. J., Davis, C. A and Hannan, J. R., (2010), Global distribution and characteristics of diurnally varying low-level jets. J Clim, Vol. 23(19), pp.5041-5064. [DOI:10.1175/2010JCLI3514.1]
  6. Hu, X. M., Klein, P. M., Xue, M., Lundquist, J. K., Zhang, F. and Qi, Y., (2013), Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J Appl Meteorl Climatol, Vol.52 (8), pp.1779-1802. [DOI:10.1175/JAMC-D-12-0256.1]
  7. Berg, L. K., Riihimaki, L. D., Qian, Y., Yan, H. and Huang, M., (2015), The low level jet over the Southern Great Plains determined from observations and reanalyses and its impact on moisture transport. J Clim, Vol. 28(17), pp.6682-6706. [DOI:10.1175/JCLI-D-14-00719.1]
  8. Vanderwende, B. J., Lundquist, J. K., Rhodes, M. E., Takle, E. S. and Irvin, S. L., (2015), Observing and simulating the summertime low-level jet in central Iowa. Mon Wea Rev, Vol. 143(6), pp.2319-2336. [DOI:10.1175/MWR-D-14-00325.1]
  9. Smith, E. N., Gebauer, J. G., Klein, P. M., Fedorovich, E and Gibbs, J. A., (2019), The Great Plains low-level jet during pecan: observed and simulated characteristics. Mon Wea Rev, Vol.147 (6), pp.1845-1869. [DOI:10.1175/MWR-D-18-0293.1]
  10. Blackadar, A. K., (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bulletin of the American Meteorological Society, Vol.38, PP. 283-290. [DOI:10.1175/1520-0477-38.5.283]
  11. Holton, J.R., (1967), The diurnal boundary-layer wind oscillation above sloping terrain. Tellus,Vol 19, pp. 199-205. [DOI:10.1111/j.2153-3490.1967.tb01473.x]
  12. Bonner, W.D., Paegle, J., (1970), Diurnal variations in boundary-layer winds over the south-central United States in summer. Mon. Weather Rev, Vol. 98, pp. 735-744. https://doi.org/10.1175/1520-0493(1970)0982.3.CO;2 [DOI:10.1175/1520-0493(1970)0982.3.CO;2]
  13. Markowski, P and Richardson, Y., (2011), Mesoscale meteorology in midlatitudes, Wiley-Blackwell, ISBN: 978-0470742136. 430 pp. [DOI:10.1002/9780470682104]
  14. Membery, D.A., (1983), Low-level wind profiles during the Gulf Shamal. Weather, Vol. 38, pp. 18-24. [DOI:10.1002/j.1477-8696.1983.tb03638.x]
  15. Rao, P. G., Hatwar, H. R., Al-Sulaiti, M. H and Al-Mulla, A. H., (2003), Summer Shamals over the Arabian Gulf. Weather, Vol. 58, pp. 471-478. [DOI:10.1002/wea.6080581207]
  16. Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp. [DOI:10.1007/978-94-009-3027-8]
  17. Liu, M., Westphal, D. L., Holt T. R. and Xu, Q., (2000), Numerical simulation of a low-level jet over complex terrain in southern Iran. Monthly Weather Review, Vol.128, pp. 1309-1327. https://doi.org/10.1175/1520-0493(2000)1282.0.CO;2 [DOI:10.1175/1520-0493(2000)1282.0.CO;2]
  18. Alizadeh-Choobari, O., Zawar-Reza, P. and Sturman, A., (2014), The wind of 120 days and dust storm activity over the Sistan Basin. Atmospheric Research, Vol 143, pp. 328 -341. [DOI:10.1016/j.atmosres.2014.02.001]
  19. Gevorgyan, A., (2018), A Case Study of Low-Level Jets in Yerevan Simulated by the WRF Model. Journal of Geophysical Research: Atmospheres, Vol.123, pp.300-314. [DOI:10.1002/2017JD027629]
  20. Vazifeh, A., Aliakbari-Bidokhti, A. A., Mazraeh Farahani, M., (2019), A climatological study of the Low Level Jet in Central Desert of Iran (Dashte Kavir). Journal of the Earth and Space Physics, Vol. 45(3), pp. 687-704.
  21. Bidokhti, A. A., Boromand, N., (2006), Study of Gap Winds in the Lut Plateau. Desert, Vol.11 (1), pp.13-30.
  22. Mobarak Hass, E., Ghafarian, p., (2018), Low- level Jet (LLJ) Simulation by Different WRF- Chem Boundary Layer Schema in Khuzestan province. J. Meteorol. Atmos. Sci., vol 1(2), pp.287-303.
  23. Giannakopoulou, E. M. and Toumi, R., (2012), The PG summertime low-level jet over sloping terrain. Q. J. R. Meteorol. Soc, Vol. 138, pp.145-157. [DOI:10.1002/qj.901]
  24. Du, Y., Chen, Y. L., Zhang, Q., (2015), Numerical simulations of the boundary layer jet off the southeastern coast of China. Mon Wea Rev, Vol.143 (4), pp.1212-1231. [DOI:10.1175/MWR-D-14-00348.1]
  25. Chen, F., & Dudhia, J., (2001), Coupling an advanced land‐surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Monthly Weather Review, vol. 129(4), pp.569- 585. https://doi.org/10.1175/1520-0493(2001)1292.0.CO;2 [DOI:10.1175/1520-0493(2001)1292.0.CO;2]
  26. Dudhia, J., (1989), Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. Journal of the Atmospheric Sciences, vol. 46(20), pp.3077- 3107. https://doi.org/10.1175/1520-0469(1989)0462.0.CO;2 [DOI:10.1175/1520-0469(1989)0462.0.CO;2]
  27. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A., (1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated‐k model for the long‐wave. Journal of Geophysical Research, vol. 120, pp.663- 682. [DOI:10.1029/97JD00237]