Pile Apparent Fixity Length Estimation for the Jacket-type Offshore Wind Turbines under Lateral Loads Applicable to Fatigue Analysis

Authors

1 Department of Marine Structures, Science and Research Branch, Islamic Azad University

2 School of Civil Engineering, Iran University of Science and Technology

Abstract

Modelling the soil-pile interaction using the Finite Element Method (FEM) might be a time-consuming process and required entirely specific soil properties. Moreover, most of the codes that have been developed for offshore wind turbines use one or more of some simplified linear foundation models suitable for dynamic analysis such as Apparent Fixity (AF) model. In the AF model for pile foundation systems, a fixity length level below the seabed is designated for the pile. It is assumed that the whole structure, including the pile and support structure, is cantilevered at the corresponding fixity length level without surrounding soil while has identical behavior to a pile penetrated the real soil. In this study, the apparent fixity length of the piles sustaining the OC4 offshore wind turbine on the seabed is estimated using a nonlinear soil-pile interaction analysis following a dynamic response analysis of the structure under lateral loads during turbine power production. Given the stiffness coefficients of the pile heads, different apparent fixity lengths are obtained, and the minimum one, verified by modal analysis, is also determined, which can be presumed in fatigue analysis. It is also demonstrated that the estimated minimum fixity length has a smaller value than the piles’ critical length. 

Keywords


  1. Ng, C. and L. Ran, Offshore wind farms: Technologies, design and operation. 2016: Woodhead Publishing.
  2. Bush, E. and L. Manuel. The influence of foundation modeling assumptions on long-term load prediction for offshore wind turbines. in ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. 2009. American Society of Mechanical Engineers. [DOI:10.1115/OMAE2009-80050]
  3. Jonkman, J., S. Butterfield, P. Passon, T. Larsen, T. Camp, J. Nichols, J. Azcona, and A. Martinez, Offshore code comparison collaboration within IEA wind annex XXIII: phase II results regarding monopile foundation modeling. 2008, National Renewable Energy Lab.(NREL), Golden, CO (United States).
  4. Barltrop, N.D. and A.J. Adams, Dynamics of fixed marine structures. Vol. 91. 2013: Butterworth-Heinemann.
  5. Akdag, C.T.J.A.O.R., Behavior of closely spaced double-pile-supported jacket foundations for offshore wind energy converters. 2016. 58: p. 164-177. [DOI:10.1016/j.apor.2016.04.008]
  6. Shi, W., H.C. Park, C.W. Chung, H.K. Shin, S.H. Kim, S.S. Lee, C.W.J.I.J.o.P.E. Kim, and M.-G. Technology, Soil-structure interaction on the response of jacket-type offshore wind turbine. 2015. 2(2): p. 139-148. [DOI:10.1007/s40684-015-0018-7]
  7. Khodair, Y., A.J.I.J.o.C.S. Abdel-Mohti, and Materials, Numerical analysis of pile-soil interaction under axial and lateral loads. 2014. 8(3): p. 239-249. [DOI:10.1007/s40069-014-0075-2]
  8. Muthukkumaran, K., K.J.J.o.O.E. Arun, and M. Energy, Erratum to: Effect of seabed slope on the pile behaviour of a fixed offshore platform under lateral forces. 2015. 1(3): p. 223-236. [DOI:10.1007/s40722-015-0015-5]
  9. Popko, W., F. Vorpahl, A. Zuga, M. Kohlmeier, J. Jonkman, A. Robertson, T.J. Larsen, A. Yde, K. Sætertrø, and K.M. Okstad. Offshore Code Comparison Collaboration Continuation (OC4), Phase 1-Results of Coupled Simulations of an Offshore Wind Turbine With Jacket Support Structure. in The Twenty-second International Offshore and Polar Engineering Conference. 2012. International Society of Offshore and Polar Engineers.
  10. Jonkman, J.M. and M.L. Buhl Jr, FAST user's guide. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/EL-500-38230, 2005.
  11. Reese, L., S. Wang, W. Isenhower, J. Arrellaga, and J. Hendrix, User's manual of LPILE plus 5.0 for windows. Ensoft Inc., Austin, TX, 2004.
  12. Vorpahl, F., W. Popko, and D. Kaufer, Description of a basic model of the "UpWind reference jacket" for code comparison in the OC4 project under IEA Wind Annex XXX. Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany, 2011.
  13. Jonkman, J., S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060, 2009. [DOI:10.2172/947422]
  14. Fischer, T., W. De Vries, and B. Schmidt, UpWind Design Basis (WP4: Offshore foundations and support structures). 2010.
  15. Passon, P., Memorandum: derivation and description of the soil-pile-interaction models. IEA-Annex XXIIII Subtask, 2006. 2.
  16. RP2A-WSD, A. Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design-. in Twenty-. 2000.
  17. Jonkman, B. and J. Jonkman, FAST v8. 16.00 a-bjj. National Renewable Energy Laboratory, 2016.
  18. Jonkman, J.M., Dynamics modeling and loads analysis of an offshore floating wind turbine. 2007, National Renewable Energy Lab.(NREL), Golden, CO (United States). [DOI:10.2172/921803]
  19. 61400‐3, I., Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines. Tech. Rep., 2009.
  20. Jonkman, J., G. Hayman, B. Jonkman, and R. Damiani, AeroDyn v15 User's Guide and Theory Manual. NREL Draft Report, 2015.
  21. Jonkman, J., A. Robertson, and G. Hayman, HydroDyn user's guide and theory manual. National Renewable Energy Laboratory, 2014.
  22. Turbines-Part, I.E.C.J.W., IEC 61400-1. 2005. 1.
  23. Bargi, K., R. Dezvareh, S.A.J.E.E. Mousavi, and E. Vibration, Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations. 2016. 15(3): p. 551-561. [DOI:10.1007/s11803-016-0343-z]
  24. Dezvareh, R., K. Bargi, S.A.J.S. Mousavi, and I. Engineering, Control of wind/wave-induced vibrations of jacket-type offshore wind turbines through tuned liquid column gas dampers. 2016. 12(3): p. 312-326. [DOI:10.1080/15732479.2015.1011169]
  25. Dezvareh, R.J.I.J.o.C. and O. Engineering, Application of Soft Computing in the Design and Optimisation of Tuned Liquid Column-Gas Damper for Use in Offshore Wind Turbines. 2019. 2(4): p. 47-57. [DOI:10.29252/ijcoe.2.4.47]
  26. Jonkman, B.J., TurbSim user's guide: Version 1.50. 2009. [DOI:10.2172/965520]
  27. Randolph, M., S. Gourvenec, D. White, and M. Cassidy, Offshore geotechnical engineering. Vol. 2. 2011: Spon Press New York.
  28. DNV, G., Support structures for wind turbines. Standard DNV GL-ST-0126, 2016.
  29. Damiani, R., J. Jonkman, and G. Hayman, SubDyn User's Guide and Theory Manual. 2015, National Renewable Energy Lab.(NREL), Golden, CO (United States). [DOI:10.2172/1225918]
  30. Guide, M.U.s., The mathworks. Inc., Natick, MA, 1998. 5: p. 333.
  31. Bir Gunjit, S.J.N.R.E.L., Golden, CO, USA, User's Guide to BModes. 2007.
  32. De Vries, W., N.K. Vemula, P. Passon, T. Fischer, D. Kaufer, D. Matha, B. Schmidt, and F. Vorpahl, Final report WP 4.2: support structure concepts for deep water sites: deliverable D4. 2.8 (WP4: offshore foundations and support structures). 2011.