Evaluating semi-empirical wave forecasting method CEM in the Strait of Hormuz

Author

Imam Khamenei Marine Science and Technology University

Abstract

Wind waves are one of the most important phenomena that should be considered in coastal and offshore activities. They have many effects on coastal environments such as wave-induced erosion, sediment and pollution transport and even in the worst cases destruction the marine ecosystems. Therefore, knowing the wave characteristics is very important for environmental research. In this paper, the accuracy of CEM semi-empirical method in forecasting the wind-induced waves characteristics in the Strait of Hormuz (SOH) have been studied. Initially, the characteristics of the waves have been calculated by employing the CEM based on wind data from local synoptic stations. Then, the evaluating process have been done by comparing the forecasting values (wave heights and periods) of this method with same recorded value of wave buoys in the SOH. According to the performed study, the accuracy of semi-empirical method in forecasting wave characteristics were in close agreement with measurements values and the SMB method is suitable for determining the wave characteristics in this area. The results show that there is a good correlation coefficient between observations and forecasting data in the CEM and the CEM method has a very small bias error. So, this method is suitable for determination the wave characteristics in this area.

Keywords


  1. US Army., (2003). Coastal Engineering Manual, Chapter II-2, Meteorology and Wave Climate, Engineer Manual. 1110-2-1100. U.S. Army Corps of Engineers, Washington, DC. US Army., (1984), Shore Protection Manual. 4th ed. 2 vols. U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC. Sverdrup, H. U., and Munk, W. H., (1947), Wind sea and swell: theory of relations for forecasting. Publication 601, U.S. Navy Hydrographic office, Washington, DC. Tolman, H. L., (1991), A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. Journal of Physical Oceanography 21, p.782-797. Booij, N., Ris, R. C., and Holthuijsen, L. H., (1999), A third-generation wave model for coastal regions. 1. Model Description and validation. Journal of Geophysical Research 104, p.7649-7666. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A.E.M., (1994), Dynamics and modeling of ocean waves. Cambridge University Press. DHI Water & Environment, 2004. MIKE 21 spectral wave module. Scientific documentation. Moeini, M. H., Etemad-Shahidi, A., and Chegini, V., (2010), Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Applied Ocean Research 32, p.209-218. Moeini, M. H., and Etemad-Shahidi, A., (2007), Application of two numerical models for wave hindcasting in Lake Erie. Applied Ocean Research 29, p.137-145. Rogers, W. E., Kaihatu, J. M., Hsu, L., Jensen, R. E., Dykes, J. D., and Holland, K. T., (2007), Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Engineering 54, p.1-15. Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J., Pullen, J., and Sclavo, M., (2005), Assessment of wind quality for oceanographic modelling in semi-enclosed basins. Journal of Marine Systems 53, p.217-33. Caliskan, h., Valle-Levinson, A., (2008). Wind-wave transformation in an elongated bay. Continental shelf research 28, p.1702-1710. Rusu, E., Pilar, P., Guedes Soares, C., (2008), Evaluation of the wave conditions in Madeira Archipelago with spectral models. Ocean Engineering 35, p.1357-1371. Bolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., (2007), Evaluation of two atmospheric models or wind–wave modeling in the NW Mediterranean. Journal of Marine Systems 65, p.336-353.
  2. US Army., (2003). Coastal Engineering Manual, Chapter II-2, Meteorology and Wave Climate, Engineer Manual. 1110-2-1100. U.S. Army Corps of Engineers, Washington, DC.
  3. US Army., (2003). Coastal Engineering Manual, Chapter II-2, Meteorology and Wave Climate, Engineer Manual. 1110-2-1100. U.S. Army Corps of Engineers, Washington, DC.
  4. US Army., (1984), Shore Protection Manual. 4th ed. 2 vols. U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC.
  5. US Army., (1984), Shore Protection Manual. 4th ed. 2 vols. U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC.
  6. Sverdrup, H. U., and Munk, W. H., (1947), Wind sea and swell: theory of relations for forecasting. Publication 601, U.S. Navy Hydrographic office, Washington, DC. [DOI:10.5962/bhl.title.38751]
  7. Sverdrup, H. U., and Munk, W. H., (1947), Wind sea and swell: theory of relations for forecasting. Publication 601, U.S. Navy Hydrographic office, Washington, DC. [DOI:10.5962/bhl.title.38751]
  8. Tolman, H. L., (1991), A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. Journal of Physical Oceanography 21, p.782-797. https://doi.org/10.1175/1520-0485(1991)0212.0.CO;2 [DOI:10.1175/1520-0485(1991)0212.0.CO;2]
  9. Tolman, H. L., (1991), A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. Journal of Physical Oceanography 21, p.782-797. https://doi.org/10.1175/1520-0485(1991)0212.0.CO;2 [DOI:10.1175/1520-0485(1991)0212.0.CO;2]
  10. Booij, N., Ris, R. C., and Holthuijsen, L. H., (1999), A third-generation wave model for coastal regions. 1. Model Description and validation. Journal of Geophysical Research 104, p.7649-7666. [DOI:10.1029/98JC02622]
  11. Booij, N., Ris, R. C., and Holthuijsen, L. H., (1999), A third-generation wave model for coastal regions. 1. Model Description and validation. Journal of Geophysical Research 104, p.7649-7666. [DOI:10.1029/98JC02622]
  12. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A.E.M., (1994), Dynamics and modeling of ocean waves. Cambridge University Press. [DOI:10.1017/CBO9780511628955]
  13. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A.E.M., (1994), Dynamics and modeling of ocean waves. Cambridge University Press. [DOI:10.1017/CBO9780511628955]
  14. DHI Water & Environment, 2004. MIKE 21 spectral wave module. Scientific documentation.
  15. DHI Water & Environment, 2004. MIKE 21 spectral wave module. Scientific documentation.
  16. Moeini, M. H., Etemad-Shahidi, A., and Chegini, V., (2010), Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Applied Ocean Research 32, p.209-218. [DOI:10.1016/j.apor.2009.10.005]
  17. Moeini, M. H., Etemad-Shahidi, A., and Chegini, V., (2010), Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Applied Ocean Research 32, p.209-218. [DOI:10.1016/j.apor.2009.10.005]
  18. Moeini, M. H., and Etemad-Shahidi, A., (2007), Application of two numerical models for wave hindcasting in Lake Erie. Applied Ocean Research 29, p.137-145. [DOI:10.1016/j.apor.2007.10.001]
  19. Moeini, M. H., and Etemad-Shahidi, A., (2007), Application of two numerical models for wave hindcasting in Lake Erie. Applied Ocean Research 29, p.137-145. [DOI:10.1016/j.apor.2007.10.001]
  20. Rogers, W. E., Kaihatu, J. M., Hsu, L., Jensen, R. E., Dykes, J. D., and Holland, K. T., (2007), Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Engineering 54, p.1-15. [DOI:10.1016/j.coastaleng.2006.06.011]
  21. Rogers, W. E., Kaihatu, J. M., Hsu, L., Jensen, R. E., Dykes, J. D., and Holland, K. T., (2007), Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coastal Engineering 54, p.1-15. [DOI:10.1016/j.coastaleng.2006.06.011]
  22. Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J., Pullen, J., and Sclavo, M., (2005), Assessment of wind quality for oceanographic modelling in semi-enclosed basins. Journal of Marine Systems 53, p.217-33. [DOI:10.1016/j.jmarsys.2004.03.006]
  23. Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J., Pullen, J., and Sclavo, M., (2005), Assessment of wind quality for oceanographic modelling in semi-enclosed basins. Journal of Marine Systems 53, p.217-33. [DOI:10.1016/j.jmarsys.2004.03.006]
  24. Caliskan, h., Valle-Levinson, A., (2008). Wind-wave transformation in an elongated bay. Continental shelf research 28, p.1702-1710. [DOI:10.1016/j.csr.2008.03.009]
  25. Caliskan, h., Valle-Levinson, A., (2008). Wind-wave transformation in an elongated bay. Continental shelf research 28, p.1702-1710. [DOI:10.1016/j.csr.2008.03.009]
  26. Rusu, E., Pilar, P., Guedes Soares, C., (2008), Evaluation of the wave conditions in Madeira Archipelago with spectral models. Ocean Engineering 35, p.1357-1371. [DOI:10.1016/j.oceaneng.2008.05.007]
  27. Rusu, E., Pilar, P., Guedes Soares, C., (2008), Evaluation of the wave conditions in Madeira Archipelago with spectral models. Ocean Engineering 35, p.1357-1371. [DOI:10.1016/j.oceaneng.2008.05.007]
  28. Bolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., (2007), Evaluation of two atmospheric models or wind-wave modeling in the NW Mediterranean. Journal of Marine Systems 65, p.336-353. [DOI:10.1016/j.jmarsys.2005.09.014]
  29. Bolaños-Sanchez, R., Sanchez-Arcilla, A., Cateura, J., (2007), Evaluation of two atmospheric models or wind-wave modeling in the NW Mediterranean. Journal of Marine Systems 65, p.336-353. [DOI:10.1016/j.jmarsys.2005.09.014]