Application of Soft Computing in Forecasting wave height (Case study: Anzali)

Authors

University of Mazandaran

Abstract

Wave height forecasting is very important for coastal management and offshore operations. In this paper, the accuracy and performance of three soft computing techniques [i.e., Multi-Layer Perceptron (MLP), Radial Basis Function Neural Network (RBFNN) and Adaptive Neuro Fuzzy Inference System (ANFIS)] were assessed for predicting significant wave height. Using different combinations of parameters, the prediction was done over a few or a two days’ time steps from measured buoy variables in the Caspian Sea (case study: Anzali).  The data collection period was from 03.01.2017 to 06.01.2017 with 30-minute intervals. The performance of different models was evaluated with statistical indices such as root mean squared error (RMSE), the fraction of variance unexplained (FVU), and coefficient of determination (R2). Different simulations of performance assessment showed that the ANFIS techniques with requirements of past and current values of atmospheric pressures and height waves has more accuracy than the other techniques in the specified time and location. Meanwhile, in high lead times, the friction velocity decreases the accuracy of wave height forecasting.

Keywords


  1. Bretschneider, C. L., (1951). Revised wave forecasting relationships. Coastal Engineering Proceedings, 1(2), 1. [DOI:10.9753/icce.v2.1]
  2. Bretschneider, C. L., (1951). Revised wave forecasting relationships. Coastal Engineering Proceedings, 1(2), 1. [DOI:10.9753/icce.v2.1]
  3. Sverdrup, H. U., & Munk, W. H.,(1947), Wind, sea, and swell: theory of relations for forecasting. [DOI:10.5962/bhl.title.38751]
  4. Sverdrup, H. U., & Munk, W. H.,(1947), Wind, sea, and swell: theory of relations for forecasting. [DOI:10.5962/bhl.title.38751]
  5. Army, U. S., (2003), Coastal engineering manual, chapter II-2, meteorology and wave climate. US Army Engineer Waterways Experiment Station, US Government Printing Office, No. EM, 1110-1112.
  6. Army, U. S., (2003), Coastal engineering manual, chapter II-2, meteorology and wave climate. US Army Engineer Waterways Experiment Station, US Government Printing Office, No. EM, 1110-1112.
  7. Donelan, M. A., (1980). Similarity theory applied to the forecasting of wave heights, periods and directions. National Water Research Institute.
  8. Donelan, M. A., (1980). Similarity theory applied to the forecasting of wave heights, periods and directions. National Water Research Institute.
  9. Booij, N., Ris, R. C., and Holthuijsen, L. H., (1999), A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. [DOI:10.1029/98JC02622]
  10. Booij, N., Ris, R. C., and Holthuijsen, L. H., (1999), A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. [DOI:10.1029/98JC02622]
  11. Komen, G. J., Cavaleri, L., and Donelan, M., (1996), Dynamics and modelling of ocean waves. Cambridge university press.
  12. Komen, G. J., Cavaleri, L., and Donelan, M., (1996), Dynamics and modelling of ocean waves. Cambridge university press.
  13. Goda, Y., (2003), Revisiting Wilson's formulas for simplified wind-wave prediction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2), 93-95. [DOI:10.1061/(ASCE)0733-950X(2003)129:2(93)]
  14. Goda, Y., (2003), Revisiting Wilson's formulas for simplified wind-wave prediction. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2), 93-95. [DOI:10.1061/(ASCE)0733-950X(2003)129:2(93)]
  15. Mahjoobi, J., Etemad-Shahidi, A., and Kazeminezhad, M. H., (2008), Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research, 30(1), 28-36. [DOI:10.1016/j.apor.2008.03.002]
  16. Mahjoobi, J., Etemad-Shahidi, A., and Kazeminezhad, M. H., (2008), Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research, 30(1), 28-36. [DOI:10.1016/j.apor.2008.03.002]
  17. Makarynskyy, O., (2004), Improving wave predictions with artificial neural networks. Ocean Engineering, 31(5-6), 709-724. [DOI:10.1016/j.oceaneng.2003.05.003]
  18. Makarynskyy, O., (2004), Improving wave predictions with artificial neural networks. Ocean Engineering, 31(5-6), 709-724. [DOI:10.1016/j.oceaneng.2003.05.003]
  19. Tsai, C.-P., & Lee, T.-L., (1999), Back-propagation neural network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4), 195-202. [DOI:10.1061/(ASCE)0733-950X(1999)125:4(195)]
  20. Tsai, C.-P., & Lee, T.-L., (1999), Back-propagation neural network in tidal-level forecasting. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4), 195-202. [DOI:10.1061/(ASCE)0733-950X(1999)125:4(195)]
  21. Vimala, J., Latha, G., and Venkatesan, R.,(2014). Real time wave forecasting using artificial neural network with varying input parameter.
  22. Vimala, J., Latha, G., and Venkatesan, R.,(2014). Real time wave forecasting using artificial neural network with varying input parameter.
  23. Dezvareh, R., (2019). Application of Soft Computing in the Design and Optimization of Tuned Liquid Column-Gas Damper for Use in Offshore Wind Turbines. International Journal of Coastal and Offshore Engineering, 2(4), pp.47-57.
  24. Dezvareh, R., (2019). Application of Soft Computing in the Design and Optimization of Tuned Liquid Column-Gas Damper for Use in Offshore Wind Turbines. International Journal of Coastal and Offshore Engineering, 2(4), pp.47-57.
  25. Dezvareh, R., (2019). Providing a new approach for estimation of wave set-up in Iran coasts. Research in marine sciences, 4(1), 438-448.
  26. Dezvareh, R., (2019). Providing a new approach for estimation of wave set-up in Iran coasts. Research in marine sciences, 4(1), 438-448.
  27. Dezvareh, R., Bargi, K. and Moradi, Y., (2012). Assessment of Wave Diffraction behind the Breakwater Using Mild Slope and Boussinesq Theories. International Journal of Computer Applications in Engineering Sciences, 2(2).
  28. Dezvareh, R., Bargi, K. and Moradi, Y., (2012). Assessment of Wave Diffraction behind the Breakwater Using Mild Slope and Boussinesq Theories. International Journal of Computer Applications in Engineering Sciences, 2(2).
  29. Etemad-Shahidi, A., and Mahjoobi, J., (2009), Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 36(15-16), 1175-1181. [DOI:10.1016/j.oceaneng.2009.08.008]
  30. Etemad-Shahidi, A., and Mahjoobi, J., (2009), Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 36(15-16), 1175-1181. [DOI:10.1016/j.oceaneng.2009.08.008]
  31. Samadi, M., Jabbari, E., and Azamathulla, H. M., (2014), Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Computing and Applications, 24(2), 357-366. [DOI:10.1007/s00521-012-1230-9]
  32. Samadi, M., Jabbari, E., and Azamathulla, H. M., (2014), Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Computing and Applications, 24(2), 357-366. [DOI:10.1007/s00521-012-1230-9]
  33. Kazeminezhad, M. H., Etemad-Shahidi, A., & Mousavi, S. J, (2005), Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 32(14-15), 1709-1725. [DOI:10.1016/j.oceaneng.2005.02.001]
  34. Kazeminezhad, M. H., Etemad-Shahidi, A., & Mousavi, S. J, (2005), Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 32(14-15), 1709-1725. [DOI:10.1016/j.oceaneng.2005.02.001]
  35. Broomhead, D. S., and Lowe, D., (1988), Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern (United Kingdom).
  36. Broomhead, D. S., and Lowe, D., (1988), Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment Malvern (United Kingdom).
  37. Powell, M. J. D., (1985), Radial basis function for multivariable interpolation: a review. In IMA Conference on Algorithms for the Approximation of Functions ans Data, 1985. RMCS.
  38. Powell, M. J. D., (1985), Radial basis function for multivariable interpolation: a review. In IMA Conference on Algorithms for the Approximation of Functions ans Data, 1985. RMCS.
  39. Belloir, F., Fache, A., and Billat, A., (1999), A general approach to construct RBF net-based classifier. In ESANN (pp. 399-404). Citeseer.
  40. Belloir, F., Fache, A., and Billat, A., (1999), A general approach to construct RBF net-based classifier. In ESANN (pp. 399-404). Citeseer.
  41. Li, Y., Qiang, S., Zhuang, X., and Kaynak, O., (2004), Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Transactions on Neural Networks, 15(3), 693-701. [DOI:10.1109/TNN.2004.826215]
  42. Li, Y., Qiang, S., Zhuang, X., and Kaynak, O., (2004), Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Transactions on Neural Networks, 15(3), 693-701. [DOI:10.1109/TNN.2004.826215]
  43. Karayiannis, N. B., (1999), Reformulated radial basis neural networks trained by gradient descent. IEEE Transactions on Neural Networks, 10(3), 657-671. [DOI:10.1109/72.761725]
  44. Karayiannis, N. B., (1999), Reformulated radial basis neural networks trained by gradient descent. IEEE Transactions on Neural Networks, 10(3), 657-671. [DOI:10.1109/72.761725]
  45. Chen, S., Wu, Y., and Luk, B. L., (1999), Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks, 10(5), 1239-1243. [DOI:10.1109/72.788663]
  46. Chen, S., Wu, Y., and Luk, B. L., (1999), Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks, 10(5), 1239-1243. [DOI:10.1109/72.788663]
  47. Jang, J.-S., (1993), ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. [DOI:10.1109/21.256541]
  48. Jang, J.-S., (1993), ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. [DOI:10.1109/21.256541]
  49. Manoj, S. B. A., (2011), Identification and control of nonlinear systems using soft computing techniques. International Journal of Modeling and Optimization, 1(1), 24. [DOI:10.7763/IJMO.2011.V1.5]
  50. Manoj, S. B. A., (2011), Identification and control of nonlinear systems using soft computing techniques. International Journal of Modeling and Optimization, 1(1), 24. [DOI:10.7763/IJMO.2011.V1.5]
  51. Pradhan, B., (2013), A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365. [DOI:10.1016/j.cageo.2012.08.023]
  52. Pradhan, B., (2013), A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365. [DOI:10.1016/j.cageo.2012.08.023]
  53. Tushar, A., & Pillai, G. N., (2015), Extreme Learning ANFIS for classification problems. In Next Generation Computing Technologies (NGCT),1st International Conference on (pp. 784-787). IEEE. [DOI:10.1109/NGCT.2015.7375227]
  54. Tushar, A., & Pillai, G. N., (2015), Extreme Learning ANFIS for classification problems. In Next Generation Computing Technologies (NGCT),1st International Conference on (pp. 784-787). IEEE. [DOI:10.1109/NGCT.2015.7375227]
  55. Kaplan, K., Kuncan, M., and Ertunc, H. M., (2015), Prediction of bearing fault size by using model of adaptive neuro-fuzzy inference system. In Signal Processing and Communications Applications Conference (SIU), pp. 1925-1928. IEEE. [DOI:10.1109/SIU.2015.7130237]
  56. Kaplan, K., Kuncan, M., and Ertunc, H. M., (2015), Prediction of bearing fault size by using model of adaptive neuro-fuzzy inference system. In Signal Processing and Communications Applications Conference (SIU), pp. 1925-1928. IEEE. [DOI:10.1109/SIU.2015.7130237]
  57. Jang, J.-S. R., Sun, C.-T., and Mizutani, E. (1997), Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. [DOI:10.1109/TAC.1997.633847]
  58. Jang, J.-S. R., Sun, C.-T., and Mizutani, E. (1997), Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. [DOI:10.1109/TAC.1997.633847]
  59. Zamani, A., Solomatine, D., Azimian, A., and Heemink, A., (2008), Learning from data for wind-wave forecasting. Ocean Engineering, 35(10), 953-962. [DOI:10.1016/j.oceaneng.2008.03.007]
  60. Zamani, A., Solomatine, D., Azimian, A., and Heemink, A., (2008), Learning from data for wind-wave forecasting. Ocean Engineering, 35(10), 953-962. [DOI:10.1016/j.oceaneng.2008.03.007]
  61. Kamranzad, B., Etemad-Shahidi, A., and Kazeminezhad, M. H.(2011), Wave height forecasting in Dayyer, the Persian Gulf. Ocean Engineering, 38(1), 248-255. [DOI:10.1016/j.oceaneng.2010.10.004]
  62. Kamranzad, B., Etemad-Shahidi, A., and Kazeminezhad, M. H.(2011), Wave height forecasting in Dayyer, the Persian Gulf. Ocean Engineering, 38(1), 248-255. [DOI:10.1016/j.oceaneng.2010.10.004]
  63. Mafi, S., and Amirinia, G., (2017), Forecasting hurricane wave height in Gulf of Mexico using soft computing methods. Ocean Engineering, 146, 352-362. [DOI:10.1016/j.oceaneng.2017.10.003]
  64. Mafi, S., and Amirinia, G., (2017), Forecasting hurricane wave height in Gulf of Mexico using soft computing methods. Ocean Engineering, 146, 352-362. [DOI:10.1016/j.oceaneng.2017.10.003]
  65. Deo, M. C., Jha, A., Chaphekar, A. S., and Ravikant, K. (2001). Neural networks for wave forecasting. Ocean Engineering, 28(7), 889-898. [DOI:10.1016/S0029-8018(00)00027-5]
  66. Deo, M. C., Jha, A., Chaphekar, A. S., and Ravikant, K. (2001). Neural networks for wave forecasting. Ocean Engineering, 28(7), 889-898. [DOI:10.1016/S0029-8018(00)00027-5]