Numerical Validation of Experimental Tests Conducted on a Fixed Offshore Oscillating Water Column

Authors

1 Iranian National Institute for Oceanography and Atmospheric Science

2 University of Tehran

Abstract

Supplying world future energy is tied with renewable energies and wave energy is one of the biggest resources of renewable energy which is somehow untapped. Oscillating Water Column (OWC), one of the most familiar devices in harnessing wave energy, is still not being properly commercialized due to the complicated hydrodynamic behavior. Offshore OWCs are exposed to higher wave energy; however, the researches on this kind of OWCs is limited. Hence, in this paper, a fully nonlinear two phase flow model of a fixed offshore OWC is developed using Ansys Fluent. Unlike the previous studies, the developed numerical model has the merit of being validated against a relatively large scale physical model (1:15). The results of the model are compared by those obtained in experimental campaign conducted by the authors. Results of both free surface elevation and air pressure in the OWC chamber are compared. Generally, the results showed an admissible accordance between numerical and experimental model. Some discrepancies could be detected in the free surface elevation in the chamber especially for short wave period. This can be attributed to the increase of nonlinear effects in the chamber by increase of wave steepness. The developed model can be applied for further researches on OWCs such as optimization or improving OWC performance.

Keywords


  1. Khan, N., Kalair, A., Abas, N. and Haider, A., (2017), Review of ocean tidal, wave and thermal energy technologies, Renewable and Sustainable Energy Reviews. Vol.72, p.590–604. [DOI:10.1016/j.rser.2017.01.079]
  2. Khan, N., Kalair, A., Abas, N. and Haider, A., (2017), Review of ocean tidal, wave and thermal energy technologies, Renewable and Sustainable Energy Reviews. Vol.72, p.590–604. [DOI:10.1016/j.rser.2017.01.079]
  3. López, I., Andreu, J., Ceballos, S., Martínez de Alegría, I. and Kortabarria, I., (2013), Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, Vol.27, p.413–434. https://doi.org/10.1016/j.rser.2013.07.009 [DOI:10.1016/J.RSER.2013.07.009]
  4. López, I., Andreu, J., Ceballos, S., Martínez de Alegría, I. and Kortabarria, I., (2013), Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, Vol.27, p.413–434. https://doi.org/10.1016/j.rser.2013.07.009 [DOI:10.1016/J.RSER.2013.07.009]
  5. Falcão, A.F.O. and Henriques, J.C.C., (2016), Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, Vol.85, p.1391–1424. https://doi.org/10.1016/j.renene.2015.07.086 [DOI:10.1016/J.RENENE.2015.07.086]
  6. Falcão, A.F.O. and Henriques, J.C.C., (2016), Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, Vol.85, p.1391–1424. https://doi.org/10.1016/j.renene.2015.07.086 [DOI:10.1016/J.RENENE.2015.07.086]
  7. Ashlin, S.J., Sundar, V. and Sannasiraj, S.A., (2016), Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, Elsevier. Vol. 96, p.341–353. [DOI:10.1016/j.renene.2016.04.091]
  8. Ashlin, S.J., Sundar, V. and Sannasiraj, S.A., (2016), Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, Elsevier. Vol. 96, p.341–353. [DOI:10.1016/j.renene.2016.04.091]
  9. Evans, D. V., (1978), The oscillating water column wave energy device. Journal Inst Maths Applics, Vol. 22, p.423–433. [DOI:10.1093/imamat/22.4.423]
  10. Evans, D. V., (1978), The oscillating water column wave energy device. Journal Inst Maths Applics, Vol. 22, p.423–433. [DOI:10.1093/imamat/22.4.423]
  11. Falcão, A.F. de O. and Sarmento, A., (1980), Wave generation by a periodic surface pressure and its application in wave-energy extraction. 15th International Congress of Theoritical and Applied Mechanics,
  12. Falcão, A.F. de O. and Sarmento, A., (1980), Wave generation by a periodic surface pressure and its application in wave-energy extraction. 15th International Congress of Theoritical and Applied Mechanics,
  13. Falnes, J. and McIver, P., (1985), Surface wave interactions with systems of oscillating bodies and pressure distributions. Applied Ocean Research, Vol.7 (4), p.225–234. [DOI:10.1016/0141-1187(85)90029-X]
  14. Falnes, J. and McIver, P., (1985), Surface wave interactions with systems of oscillating bodies and pressure distributions. Applied Ocean Research, Vol.7 (4), p.225–234. [DOI:10.1016/0141-1187(85)90029-X]
  15. Sarmento, A.J.N.A. and De Falcao, A.F.O., (1985), Wave generation by an oscillating surface-pressure and its applications in wave energy extraction. Journal of Fluid Mechanics, Vol.150, p.467–485. [DOI:10.1017/S0022112085000234]
  16. Sarmento, A.J.N.A. and De Falcao, A.F.O., (1985), Wave generation by an oscillating surface-pressure and its applications in wave energy extraction. Journal of Fluid Mechanics, Vol.150, p.467–485. [DOI:10.1017/S0022112085000234]
  17. Evans, D., (1982), Wave power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics, Vol.114, p.481–499. [DOI:10.1017/S0022112082000263]
  18. Evans, D., (1982), Wave power absorption by systems of oscillating surface pressure distributions. Journal of Fluid Mechanics, Vol.114, p.481–499. [DOI:10.1017/S0022112082000263]
  19. Brito-Melo, A., Sarmento, A.J.N. a., Clement, A.H. and Delhommeau, G., (1999), A 3D boundary element code for the analysis of OWC wave-power plants. Proceedings of the 1999 Ninth International Offshore and Polar Engineering Conference (Volume 1), Brest, France, 30 May - 4 June 1999, Vol.I, p.188–195.
  20. Brito-Melo, A., Sarmento, A.J.N. a., Clement, A.H. and Delhommeau, G., (1999), A 3D boundary element code for the analysis of OWC wave-power plants. Proceedings of the 1999 Ninth International Offshore and Polar Engineering Conference (Volume 1), Brest, France, 30 May - 4 June 1999, Vol.I, p.188–195.
  21. Delauré, Y. and Lewis, A., (2003), 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, Vol.30, p.309–330. [DOI:10.1016/S0029-8018(02)00032-X]
  22. Delauré, Y. and Lewis, A., (2003), 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, Vol.30, p.309–330. [DOI:10.1016/S0029-8018(02)00032-X]
  23. Iturrioz, A., Guanche, R., Lara, J.L., Vidal, C. and Losada, I.J., (2015), Validation of OpenFOAM® for Oscillating Water Column three-dimensional modeling. Ocean Engineering, Vol.107, p.222–236. [DOI:10.1016/j.oceaneng.2015.07.051]
  24. Iturrioz, A., Guanche, R., Lara, J.L., Vidal, C. and Losada, I.J., (2015), Validation of OpenFOAM® for Oscillating Water Column three-dimensional modeling. Ocean Engineering, Vol.107, p.222–236. [DOI:10.1016/j.oceaneng.2015.07.051]
  25. Vyzikas, T., Deshoulières, S., Giroux, O., Barton, M. and Greaves, D., (2017), Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model. Renewable Energy, Vol.102, p.294–305. [DOI:10.1016/j.renene.2016.10.044]
  26. Vyzikas, T., Deshoulières, S., Giroux, O., Barton, M. and Greaves, D., (2017), Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model. Renewable Energy, Vol.102, p.294–305. [DOI:10.1016/j.renene.2016.10.044]
  27. Simonetti, I., Cappietti, L., Elsafti, H. and Oumeraci, H., (2017), Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study. Energy, Elsevier B.V. Vol.139, p.1197–1209. [DOI:10.1016/j.energy.2017.08.033]
  28. Simonetti, I., Cappietti, L., Elsafti, H. and Oumeraci, H., (2017), Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study. Energy, Elsevier B.V. Vol.139, p.1197–1209. [DOI:10.1016/j.energy.2017.08.033]
  29. Simonetti, I., Cappietti, L., Elsafti, H. and Oumeraci, H., (2018), Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling. Renewable Energy, Elsevier B.V. Vol.119, p.741–753. [DOI:10.1016/j.renene.2017.12.027]
  30. Simonetti, I., Cappietti, L., Elsafti, H. and Oumeraci, H., (2018), Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling. Renewable Energy, Elsevier B.V. Vol.119, p.741–753. [DOI:10.1016/j.renene.2017.12.027]
  31. Kamath, A., Bihs, H. and Arntsen, Ø.A., (2015), Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean Engineering, Vol.102, p.40–50. [DOI:10.1016/j.oceaneng.2015.04.043]
  32. Kamath, A., Bihs, H. and Arntsen, Ø.A., (2015), Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean Engineering, Vol.102, p.40–50. [DOI:10.1016/j.oceaneng.2015.04.043]
  33. Morris-Thomas, M.T., Irvin, R.J. and Thiagarajan, K.P., (2007), An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column. Journal of Offshore Mechanics and Arctic Engineering, Vol.129(4), p.273. [DOI:10.1115/1.2426992]
  34. Morris-Thomas, M.T., Irvin, R.J. and Thiagarajan, K.P., (2007), An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column. Journal of Offshore Mechanics and Arctic Engineering, Vol.129(4), p.273. [DOI:10.1115/1.2426992]
  35. Luo, Y., Nader, J.-R., Cooper, P. and Zhu, S.-P., (2014), Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters. Renewable Energy, Vol.64, p.255–265. https://doi.org/10.1016/j.renene.2013.11.007 [DOI:10.1016/J.RENENE.2013.11.007]
  36. Luo, Y., Nader, J.-R., Cooper, P. and Zhu, S.-P., (2014), Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters. Renewable Energy, Vol.64, p.255–265. https://doi.org/10.1016/j.renene.2013.11.007 [DOI:10.1016/J.RENENE.2013.11.007]
  37. Anbarsooz, M., Faramarzi, A. and Ghasemi, A., (2016), A numerical study on the performance of fixed oscillating water column wave energy converter at steep waves. ASME 2016 Power Conference Collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. [DOI:10.1115/POWER2016-59142]
  38. Anbarsooz, M., Faramarzi, A. and Ghasemi, A., (2016), A numerical study on the performance of fixed oscillating water column wave energy converter at steep waves. ASME 2016 Power Conference Collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. [DOI:10.1115/POWER2016-59142]
  39. Elhanafi, A., Fleming, A., Macfarlane, G. and Leong, Z., (2017), Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter. Renewable Energy, Elsevier Ltd. Vol.105, p.209–231. [DOI:10.1016/j.renene.2016.12.039]
  40. Elhanafi, A., Fleming, A., Macfarlane, G. and Leong, Z., (2017), Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter. Renewable Energy, Elsevier Ltd. Vol.105, p.209–231. [DOI:10.1016/j.renene.2016.12.039]
  41. Elhanafi, A., Macfarlane, G., Fleming, A. and Leong, Z., (2017), Investigations on 3D effects and correlation between wave height and lip submergence of an offshore stationary OWC wave energy converter. Applied Ocean Research, Elsevier B.V. Vol.64, p.203–216. [DOI:10.1016/j.apor.2017.03.002]
  42. Elhanafi, A., Macfarlane, G., Fleming, A. and Leong, Z., (2017), Investigations on 3D effects and correlation between wave height and lip submergence of an offshore stationary OWC wave energy converter. Applied Ocean Research, Elsevier B.V. Vol.64, p.203–216. [DOI:10.1016/j.apor.2017.03.002]
  43. Elhanafi, A., Macfarlane, G., Fleming, A. and Leong, Z., (2017), Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter. Applied Energy, Elsevier Ltd. Vol.189, p.1–20. [DOI:10.1016/j.apenergy.2016.11.095]
  44. Elhanafi, A., Macfarlane, G., Fleming, A. and Leong, Z., (2017), Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter. Applied Energy, Elsevier Ltd. Vol.189, p.1–20. [DOI:10.1016/j.apenergy.2016.11.095]
  45. Elhanafi, A. and Kim, C.J., (2018), Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter. Renewable Energy, Vol.125, p.518–528. [DOI:10.1016/j.renene.2018.02.131]
  46. Elhanafi, A. and Kim, C.J., (2018), Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter. Renewable Energy, Vol.125, p.518–528. [DOI:10.1016/j.renene.2018.02.131]
  47. Elhanafi, A., Fleming, A., Macfarlane, G. and Leong, Z., (2017), Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column–wave energy converter using CFD. International Journal of Naval Architecture and Ocean Engineering, Elsevier Ltd. Vol.9(1), p.77–99. [DOI:10.1016/j.ijnaoe.2016.08.002]
  48. Elhanafi, A., Fleming, A., Macfarlane, G. and Leong, Z., (2017), Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column–wave energy converter using CFD. International Journal of Naval Architecture and Ocean Engineering, Elsevier Ltd. Vol.9(1), p.77–99. [DOI:10.1016/j.ijnaoe.2016.08.002]
  49. Elhanafi, A., Fleming, A., Macfarlane, G. and Leong, Z., (2016), Numerical energy balance analysis for an onshore oscillating water column--wave energy converter. Energy, Elsevier. Vol.116, p.539–557. [DOI:10.1016/j.energy.2016.09.118]
  50. Elhanafi, A., Fleming, A., Macfarlane, G. and Leong, Z., (2016), Numerical energy balance analysis for an onshore oscillating water column--wave energy converter. Energy, Elsevier. Vol.116, p.539–557. [DOI:10.1016/j.energy.2016.09.118]
  51. Zabihi, M., Mazaheri, S. and Namin, M.M., (2018), Experimental Study of Wave Spectrum Type Impact on Inner Chamber Fluctuation, Pressure and Reflection of OWC Device. INTERNATIONAL JOURNAL OF COASTAL AND OFFSHORE ENGINEERING, Vol.2(3), p.19–27.
  52. Zabihi, M., Mazaheri, S. and Namin, M.M., (2018), Experimental Study of Wave Spectrum Type Impact on Inner Chamber Fluctuation, Pressure and Reflection of OWC Device. INTERNATIONAL JOURNAL OF COASTAL AND OFFSHORE ENGINEERING, Vol.2(3), p.19–27.
  53. Zabihi, M., Mazaheri, S. and Montazeri, M.M., (2019), Experimental hydrodynamic investigation of a fixed o ff shore Oscillating Water Column device. Applied Ocean Research, Vol.85, p.20–33. [DOI:10.1016/j.apor.2019.01.036]
  54. Zabihi, M., Mazaheri, S. and Montazeri, M.M., (2019), Experimental hydrodynamic investigation of a fixed o ff shore Oscillating Water Column device. Applied Ocean Research, Vol.85, p.20–33. [DOI:10.1016/j.apor.2019.01.036]
  55. Hirt, C.W. and Nichols, B.D., (1981), Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, Elsevier. Vol.39(1), p.201–225. [DOI:10.1016/0021-9991(81)90145-5]
  56. Hirt, C.W. and Nichols, B.D., (1981), Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, Elsevier. Vol.39(1), p.201–225. [DOI:10.1016/0021-9991(81)90145-5]
  57. Elhanafi, A., Fleming, A., Leong, Z. and Macfarlane, G., (2017), Effect of RANS-based turbulence models on nonlinear wave generation in a two-phase numerical wave tank. Progress in Computational Fluid Dynamics, an International Journal, Inderscience Publishers (IEL). Vol.17(3), p.141–158. [DOI:10.1504/PCFD.2017.084350]
  58. Elhanafi, A., Fleming, A., Leong, Z. and Macfarlane, G., (2017), Effect of RANS-based turbulence models on nonlinear wave generation in a two-phase numerical wave tank. Progress in Computational Fluid Dynamics, an International Journal, Inderscience Publishers (IEL). Vol.17(3), p.141–158. [DOI:10.1504/PCFD.2017.084350]