Investigation of Infragravity Waves Dependency on Wind Waves for Breaking and Nonbreaking Conditions in the Sandy Beaches of Southern Caspian Sea (Nowshahr Port)

Author

Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS)

Abstract

In this study, the evolution and dependency of infragravity waves (IGWs) on wind waves for breaking and nonbreaking conditions is separately investigated. The efficiency of two constant cutoff frequencies (0.125 and 0.14 Hz) is compared for wave data measured in the sandy beaches of Nowshahr at the Southern Caspian Sea. It is found that the frequency of 0.125 Hz results higher correlation coefficients between IGWs energy content and two wind wave groups. Two pair different correlation patterns between IGWs in one side and wind waves higher and lower than 0.125 Hz in another side were recognized for breaking and nonbreaking conditions. In can be concluded that the IGWs excitation is controlled by the frequency distribution of wind wave energy.
According to 0.125 Hz as more successful option, the correlation of IGWs with swell waves is generally more significant than sea waves. In the nonbreaking wave condition, the IGWs are well correlated with sea waves, whereas no considerable correlation between IGWs and sea waves is found in the breaking condition. It is resulted that IGWs energy is approximately linearly proportional of both swell and sea waves in nonbreaking condition. In the high and moderate energy incident wave conditions, the IGWs energy grows shoreward, while energy attenuation can be detected for IGWs in very low energy waves.

Keywords


  1. Sheremet A., Guza R., Elgar S., Herbers T., (2002), Observations of nearshore infragravity waves: Seaward and shoreward propagating components. Journal of Geophysical Research: Oceans. Vol.107(C8).
  2. Battjes J., Bakkenes H., Janssen T., Van Dongeren A., (2004), Shoaling of subharmonic gravity waves. Journal of Geophysical Research: Oceans., Vol.109(C02009).
  3. Baldock T., Huntley D., (2002), Long–wave forcing by the breaking of random gravity waves on a beach. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences: The Royal Society; p. 2177-2201. [DOI:10.1098/rspa.2002.0962]
  4. Elgar S., Herbers T., Okihiro M., Oltman-Shay J., Guza R., (1992), Observations of infragravity waves. Journal of Geophysical Research. Vol.97: 15573-15577. [DOI:10.1029/92JC01316]
  5. Herbers T., Elgar S., Guza R., O'Reilly W., (1995), Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part II: Free waves. Journal of Physical Oceanography. Vol. (25): 1063-1079.
  6. Ruessink B., (1998), Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. Journal of Geophysical Research: Oceans. Vol. (103): 12795-805. [DOI:10.1029/98JC00893]
  7. Aagaard T., Bryan K.R., (2003), Observations of infragravity wave frequency selection. Continental Shelf Research. Vol. (23): 1019-1034. [DOI:10.1016/S0278-4343(03)00082-7]
  8. Luick J.L., Hinwood J.B., (2008), Water levels in a dual-basin harbour in response to infragravity and edge waves. Progress in Oceanography. Vol. (77): 367-375. [DOI:10.1016/j.pocean.2006.04.002]
  9. Guerrini M., Bellotti G., Fan Y., Franco L., (2014), Numerical modelling of long waves amplification at Marina di Carrara Harbour. Applied Ocean Research. Vol. (48): 322-330. [DOI:10.1016/j.apor.2014.10.002]
  10. López M., Iglesias G., (2014), Long wave effects on a vessel at berth. Applied Ocean Research. Vol. (47): 63-72. [DOI:10.1016/j.apor.2014.03.008]
  11. Inch K., Davidson M., Masselink G., Russell P., (2017), Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions. Continental Shelf Research. Vol. (138): 19-31. [DOI:10.1016/j.csr.2017.02.010]
  12. Diaz-Hernandez G., Mendez F.J., Losada I.J., Camus P., Medina R., (2015), A nearshore long-term infragravity wave analysis for open harbours. Coastal Engineering. Vol. (97): 78-90. [DOI:10.1016/j.coastaleng.2014.12.009]
  13. Munk W.H., (1949), Surf beats. Trans Am Geophys :union:. Vol. (30): 849–854.
  14. Tucker M., (1950), Surf beats: sea waves of 1 to 5 min. period. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences: The Royal Society; p. 565-73. [DOI:10.1098/rspa.1950.0120]
  15. Ruessink B., (1998), The temporal and spatial variability of infragravity energy in a barred nearshore zone. Continental Shelf Research. Vol. (18): 585-605. [DOI:10.1016/S0278-4343(97)00055-1]
  16. Hasselmann K., (1962), On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. Journal of Fluid Mechanics. Vol. (12): 481-500.
  17. Longuet-Higgins M.S., Stewart R., (1962), Radiation stress and mass transport in gravity waves, with application to 'surf beats'. Journal of Fluid Mechanics. Vol. (13): 481-504. [DOI:10.1017/S0022112062000877]
  18. Masselink G., (1995), Group bound long waves as a source of infragravity energy in the surf zone. Continental Shelf Research. Vol. (15): 1525-1547. [DOI:10.1016/0278-4343(95)00037-2]
  19. Baldock T., (2006), Long wave generation by the shoaling and breaking of transient wave groups on a beach. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences: The Royal Society; p. 1853-1876. [DOI:10.1098/rspa.2005.1642]
  20. Lin Y-H., Hwung H-H., (2012), Infra-gravity wave generation by the shoaling wave groups over beaches. China Ocean Engineering. Vol. (26): 1-18.
  21. Okihiro M., Guza R., Seymour R., (1992), Bound infragravity waves. DTIC Document.
  22. Herbers T., Elgar S., Guza R., (1994), Infragravity-frequency (0.005-0.05 Hz) motions on the shelf. Part I: Forced Waves. Journal of Physical Oceanography. p. 917-927. https://doi.org/10.1175/1520-0485(1994)0242.0.CO;2 [DOI:10.1175/1520-0485(1994)0242.0.CO;2]
  23. Brander R.W., Kench P.S., Hart D., (2004), Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Marine Geology. Vol. (207):169-184. [DOI:10.1016/j.margeo.2004.03.014]
  24. Ogawa H., (2013), Observation of wave transformation on a sloping type B shore platform under wind-wave and swell conditions. Geo-Marine Letters. Vol. (33): 1-11.
  25. Mahmoudof S.M., Badiei P., Siadatmousavi S.M., Chegini V., (2016), Observing and estimating of intensive triad interaction occurrence in very shallow water. Continental Shelf Research. Vol. (122): 68-76. [DOI:10.1016/j.csr.2016.04.003]
  26. Henderson S.M., Bowen A., (2002), Observations of surf beat forcing and dissipation. Journal of Geophysical Research: Oceans. 107. [DOI:10.1029/2000JC000498]
  27. De Bakker A.T.M., Tissier M.F.S., Ruessink B.G., (2014), Shoreline dissipation of infragravity waves. Continental Shelf Research. Vol. (72): 73-82. [DOI:10.1016/j.csr.2013.11.013]
  28. Van Dongeren A., Battjes J., Janssen T., Van Noorloos J., Steenhauer K., Steenbergen G., Reniers A., (2007), Shoaling and shoreline dissipation of low-frequency waves. Journal of Geophysical Research. Vol. (112), C02011. [DOI:10.1029/2006JC003701]
  29. De Bakker A.T.M., Tissier M.F.S., Ruessink B.G., (2016), Beach steepness effects on nonlinear infragravity-wave interactions: a numerical study. Journal of Geophysical Research. Vo. (121): 554-570. [DOI:10.1002/2015JC011268]
  30. Guedes R.M.C., Bryan K.R., Coco G., (2013), Observations of wave energy fluxes and swash motions on a low-sloping, dissipative beach. Journal of Geophysical Research. Vol. (118): 3651-3669. [DOI:10.1002/jgrc.20267]