Surveying sea surface effect in satellite altimeter-derived wind speed

Authors

1 Iranian National Institute for Oceanography and Atmospheric Science, IRAN

2 Satellite Oceanography Laboratory, Russian State Hydrometeorological University, St. Petersburg, Russia

3 Laboratoire d’Oceanographie Spatiale, Ifremer, Plouzane

Abstract

To improve sea surface wind speed in coastal regions, we used nadir satellite altimeter measurements in the Persian Gulf and Arabian Sea. With combining normalized radar cross section for two bands of satellite altimeter measurements and significant wave height suggested the method to obtain “true” sea surface wind speed. In the coastal regions, we used a dimensionless significant wave height to gain empirical dependency to fetch-limited wind wave development. In this research, normalized radar cross section is simulated by using inverse wave age and fetch laws. As established this method helps to refine altimeter measurements of sea surface wind in the coastal regions.

Keywords


[1] Tournadre, J.; Chapron, B.; Reul, N. High resolution imaging of the ocean surface backscatter by inversion of altimeter waveforms. Journal of Atmospheric and Oceanic Technology, 2011, 28, 1050–1062. http://dx.doi.org/10.1175/2011JTECHO820.1. [2] Chapron, B.; Katsaros, K.; Elfouhaily, T.; Vandemark, D. A note on relationships between sea surface roughness and altimeter backscatter. Remote Sensing and Global Modelling, 1995, 869-878. [3] Elfouhaily, T.; Vandemark, D.; Gourrion, J.; Chapron, B. Estimation of wind stress using dual-frequency TOPEX data. Journal of Geophysical Research, 1998, 103, Issue C11, 25101–25108. http://dx.doi.org/10.1029/98JC00193. [4] Gourrion, J.; Vandemark, D.; Bailey, S.; Chapron, B. Investigation of C-band altimeter cross section dependence on wind speed and sea state. Canadian Journal of Remote Sensing, 2002, vol. 28, issue 3, 484-489, http://dx.doi.org/10.5589/m02-046. [5] Chen, G.; Chapron, B.; Ezraty, R.; Vandemark, D. A dual-frequency approach for retrieving sea surface wind speed from TOPEX altimetry. J. Geophys. Res., 2002, 107(C12), 322. [6] Goddijn-Murphy L., Woolf , D.; Chapron, B.; Queffeulou, P. Improvements to estimating the air–sea gas transfer velocity by using dual-frequency, altimeter backscatter. Remote Sensing of Environment, 2013, Volume 139, 1–5. http://dx.doi.org/10.1016/j.rse.2013.07.026. [7] Vandemark, D.; Chapron, B.; Sun, J.; Crescenti, G. H.; Graber, H. C. Ocean Wave Slope Observations Using Radar Backscatter and Laser Altimeters. J. Phys. Oceanogr., 2004, 34, 2825–2842. [8] Badulin, S. I. A physical model of sea wave period from altimeter data. Journal Geophysical Research Oceans, 2014, 119, 856–869. http://dx.doi.org/10.1002/2013JC009336. [9] Golubkin, P. A.; Chapron, B.; Kudryavtsev V. N. Wind Waves in the Arctic Seas: Envisat and AltiKa Data Analysis. Marine Geodesy, 2014, http://dx.doi.org/10.1080/01490419.2014.990592. [10] Dumont, J. P. OSTM/Jason-2 Products Handbook. 2015, JPL: STM-29-1237, NOAA/NESDIS: Polar Series/OSTM J400. [11] Tomczak, M.; Godfrey, J. S. Regional Oceanography: an Introduction”, 2nd edition, Elsevier Science Ltd., 2003, Oxford, U. K. ISBN: 817035068, 391pp. [12] Rodo, X.; Comin, F. Global Climate Current Research and Uncertainties in the Climate System, 2002., Springer, Berlin, 10837865, 286 pp. [13] Kitaigorodskii, S. A. Applications of the theory of similarity to the analysis of windgenerated wave motion as a stochastic process. Izv. Geophys. Ser. Acad. Sci., USSR 1, 1962, p105-117. [14] Zakharov, V. E., Badulin, S. I., Hwang, P. A., Caulliez, G. Universality of sea wave growth and its physical roots, J. Fluid Mech., 2015, 780, 503–535, doi:10.1017/jfm.2015.468. [15] Kudryavtsev, V.; Golubkin, P.; Chapron, B. A simplified wave enhancement criterion for moving extreme events, J. Geophys. Res. Oceans, 2015, 120, 7538–7558, doi:10.1002/2015JC011284. [16] Kudryavtsev, V.; Akimov, D.; Johannessen, J.; Chapron, B. On radar imaging of current features: 1. Model and comparison with observations. J. Geophys. Res., 2005, 110, C07016, http://dx.doi.org/10.1029/2004JC002505. [17] Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A Unified Directional Spectrum for Long and Short Wind-Driven Waves. Journal of Geophysical Research, 1997, 102, 15781–96. http://dx.doi.org/10.1029/97JC00467. [18] Gommenginger, C. P.; Srokosz, M. A.; Challenor, P. G. Measuring ocean wave period with satellite altimeters: A simple empirical model, Geophys. Res. Lett., 2003, 30(22), 2150, doi:10.1029/2003GL017743. [19] Goddijn-Murphy, L.; Martín Míguez, B.; McIlvenny, J.; Gleizon, P. Wave energy resource assessment with AltiKa satellite altimetry: A case study at a wave energy site. Geophysical Research Letter, 2015, 42, 5452–5459. http://dx.doi.org/10.1002/2015gl064490. [20] Quilfen, Y.; Chapron, B.; Collard, F.; Serre, M. Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters, Mar. Geod., 2004, 27(3–4), 535–549, doi:10.1080/01490410490902025.