Tidal components along the north of Oman Gulf and Persian Gulf

Document Type : Original Research Article


Assistant Professor of physical oceanography, Department of Nonliving Resources of Atmosphere and Ocean, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran


This study concentrates on the 61tidal constituents of 17stations on the north of Oman Gulf(OG),Strait of Hormuz(SH)and Persian Gulf(PG).Five-years tidal data(2014-2018,30-minutes intervals) was achieved by Iran National Cartographic Center to calculate mean levels of stations.Then,t_tide library was used to calculate 61 tidal constituents by 95%of confidence in Matlab for 2018 data.Then, they sorted by the magnitude of the amplitude to express the most significant ones in each stations. Results shows that the mean levels of the northwest and northeast of PG are mirror images.Although the major diurnal and semidiurnal tidal constituents of 11stations areM2,K1,S2andO1,by changes in order of importance; in 6stations,N2 constituent is more important than O1. These exceptions go back to the stations of SH and northwest ofPG, which shows the importance of the SH bending and the shallowing of the northwest of PG. Moreover, the top ten components of all stations are not 10 unique components and they include 21 components.Due to the Form factor,F,all the studied stations are mainly mixed semidiurnal type. The predicted t-tide tides show small errors compare with the original ones. The results also showed that the range and components of harmonic astronomical tides are influenced by local geography. On the head of PG,the EmamKhomeini’s tides is sharp due to the shallow water, and the semidiurnal components(S2andN2)are much stronger than the diurnal components(O1andP1).The Pol Port’s tides is effected by narrowing of SH.Therefore, in some ports, non-tidal parameters such as geographical shape or shallow water are effective while considering astronomical components of moon and sun.


Main Subjects

  1. Reynolds, R.M., (1993). Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition, Marine Pollution Bulletin, Vol.27, p.35-59. DOI: 10.1016/0025-326x(93)90007-7
  2. Cartwright, D.E., and Tayler, R.J., (1971), New computations of the tide-generating potential, Geophysical Journal of the Royal Astronomical Society, Vol.23(1), p.45-74, DOI: 10.1111/j.1365-246X.1971.tb01803.x
  3. Darwin, G.H., (1911), The Tides and Kindred Phenomena in the solar system, Nature, Vol. 88(2193), p.35-36. DOI: 10.1038/088035a0
  4. Symon, K.R., (1971), Mechanics addison-wesley. Reading, MA, 1.
  5. Pond, S. and Pickard, G.L., (1983), Introductory dynamic oceanography, 2nd Edition, Pergamon Press.
  6. Hammons, T.J., (1993), Tidal power. Proceedings of the IEEE, Vol.81(3), p.419-433. DOI: 10.1109/5.241486
  7. Bryden, I.G. and Macfarlane, D.M., (2000), The utilisation of short term energy storage with tidal current generation systems. Energy, Vol.25(9), p.893-907. DOI: 10.1016/s0360-5442(00)00020-7
  8. Doodson, A.T., (1922), Harmonic development of the tide-generating potential. Proceedings of the Royal Society of London, Series A, Vol.100(704), p.305–329. DOI: 1098/rspa.1921.0088
  9. SHOM and UKHO, (2017), Tidal Constituents, Date modified May 8, 2017. Retrieved August 12, 2018, from https://www.iho.int/mtg_docs/com_wg/IHOTC/IHOTC_Misc/TWCWG_Constituent_list.pdf.
  10. Woodworth, P.L., (2010), A survey of recent changes in the main components of the ocean tide, Continental Shelf Research, Vol.30(15), p.1680-1691. DOI: 10.1016/j.csr.2010.07.002
  11. Müller, M., Arbic, B.K. and Mitrovica J., (2011), Secular trends in ocean tides: observations and model results. Journal of Geophysical Research, Vol.116(C05) p.013. DOI: 10.1029/2010jc006387
  12. Haigh, I.D., Wijeratne, E.M.S., MacPherson, L.R., Pattiaratchi, C.B., Mason, M.S., Crompton, R.P. and George S., (2014), Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level, Climate Dynamics, Vol.42(1-2), p.121-138. DOI: 10.1007/s00382-012-1652-1
  13. Mawdsley, R.J., Haigh, I.D. and Wells N.C., (2015), Global changes in tidal high water, low water and range. Earth’s Futures, Vol.3(2), p.66-81. DOI: 10.1002/2014ef000282
  14. Jay, D.A., (2009), Evolution of tidal amplitudes in the eastern Pacific Ocean, Geophysical Research Letters, Vol.36(4), p.L04603, DOI: 10.1029/2008gl036185
  15. Ray, R.D., (2006), Secular changes of the M2 tide in the Gulf of Maine, Continental Shelf Research, Vol.26(3), p.422-427, DOI: 10.1016/j.csr.2005.12.005
  16. Ray, R. D. (2009), Secular changes in the solar semidiurnal tide of the Western North Atlantic Ocean, Geophysical Research Letters, Vol.36(19), p.L19601, DOI: 10.1029/2009gl040217
  17. Müller, M., (2011), Rapid change in semidiurnal tides in the North Atlantic since 1980. Geophysical Research Letters, 38(11), p. L11602. DOI: 10.1029/2011gl047312
  18. Feng, X., Tsimplis, M.N. and Woodworth, P.L., (2015), Nodal variations and longterm changes in the main tides on the coasts of China. Journal of Geophysical Research: Oceans, Vol.120(2), p.1215-1232. DOI: 10.1002/2014jc010312
  19. Feng, X., and Tsimplis, M.N., (2014), Sea level extremes at the coasts of China, Journal of Geophysical Research: Oceans, Vol.119(3), p.1593–1608, DOI: 10.1002/2013jc009607
  20. Rasheed, A. S., and Chua, V.P., (2014), Secular trends in tidal parameters along the coast of Japan. Atmosphere-Ocean, Vol.52(2), p.155-168. DOI: 10.1080/07055900.2014.886031
  21. Pous, S., Carton, X. and Lazure, P., (2012), A Process Study of the Tidal Circulation in the Persian Gulf, Open Journal of Marine Science, Vol.2(04), p.131-140. DOI: 10.4236/ojms.2012.24016
  22. Akbari, P., Sadrinasab, M., Chegini, V., Siadatmousavi, M., (2016), Tidal constituents in the Persian Gulf, Gulf of Oman and Arabian Sea: a numerical study, Indian Journal of Geo-Marine Sciences, Vol.45(8), p.1010-1016.
  23. ESRI, (2011), ArcGIS Desktop, 64-bit, Version 10.3, Released 2011, Redlands, CA: Environmental Systems Research Institute.
  24. Randall, J.E., (1995), Coastal fishes of Oman, University of Hawaii Press- Hawaii.
  25. Barth, H.J. and Khan, N.Y., (2008), Biogeophysical setting of the Gulf, Protecting the Gulf’s marine ecosystems from pollution, p. 1-21. DOI: 10.1007/978-3-7643-7947-6_1
  26. Nadim, F., Bagtzoglou, A.C. and Iranmahboob, J., (2008), Coastal management in the Persian Gulf region within the framework of the ROPME programme of action. Ocean and Coastal Management, Vol.51(7), p.556-565. DOI: 10.1016/j.ocecoaman.2008.04.007
  27. Barth, H.-J. (1998). Sebkhas als Ausdruck von Landschaftsdegradation im zentralen Küstentiefland der Ostprovinz Saudi-Arabiens. Regensburger Geographische Schriften-Regensburg.
  28. Sugden, W., (1963), The hydrography of the Persian Gulf and its significance in respect to evaporative deposition. American Journal of Science, Vol.261(8), p.741–55. DOI: 10.2475/ajs.261.8.741
  29. Johns, W.E., Yao, F., Olson, D.B., Josey, S.A., Grist, J.P. and Smeed, D.A., (2003), Observations of seasonal exchange through the Straits of Hormuz and the inferred freshwater budgets of the Persian Gulf, Journal of Geophysical Research, 108(C12), p.3391. DOI: 10.1029/2003jc001881
  30. Privett, D.W. (1959), Monthly charts of evaporation from the North Indian Ocean, including the Red Sea and the Persian Gulf, Quarterly Journal of the Royal Meteorological Society, Vol.85(366), p.424–428. DOI: 10.1002/qj.49708536614
  31. Hastenrath, S. and Lamb, P.J., (1979). Climatic atlas of the Indian Ocean, Part 2, The ocean heat budget, University of Wisconsin Press, Madison-Wisconsin.
  32. Brewer, P.G. and Dyrssen, D., (1985), Chemical Oceanography of the Persian Gulf, Progress in Oceanography, Vol.14, p.41–55. DOI: 10.1016/0079-6611(85)90004-7
  33. Ahmad, F. and Sultan, S.A.R., (1991), Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz, Atmosphere-Ocean, Vol.29(1), p.54–61. DOI: 10.1080/07055900.1991.9649392
  34. Soyuf Jahromi, M., (2022), The spatial and temporal monitoring of the sea surface temperature anomaly of the Strait of Hormuz. International Journal Of Coastal, Offshore And Environmental Engineering (ijcoe), Vol.7(4), p.1-6. DOI: 10.22034/ijcoe.2022.164980
  35. Pourkarimian, A., Soyuf Jahromi, M., and Malakooti, H. (2021). Tracking of the oceanic water content resources of the precipitation in Dayyer Port (March 2017). Journal of Marine Science and Technology, Vol.20(3), p.31-49. DOI: 10.22113/jmst.2019.182862.2282
  36. Pourkarimian, A., Soyuf Jahromi, M., and Malakooti, H. (2022). Investigation and study of flood moisture transfer (Case study: March 2017 in south and southwest of Iran). Amphibious Science and Technology, Vol.2(4), p.40-61. DOI: 10.22034/jamst.2022.543537.1050
  37. Swift, S.A. and Bower, A.S., (2003), Formation and circulation of dense water in the Persian/Arabian Gulf, Journal of Geophysical Research, Vol.108(C1), p.3004, DOI: 10.1029/2002jc001360
  38. Darskhan, S. and Soyuf Jahromi, M., (2022) Numerical solution of the geostrophic mesoscale eddy in the shallow water model, Journal of Oceanography, Vol.13(49), p.81-91, (In Persian) DOI: 10.52547/joc.13.49.81
  39. Ramak, H., Soyuf Jahromi, M. and Akbari, P., (2021), Using surface temperature data of the Oman Sea to identify subsurface water of the Persian Gulf, Hydrophysics,7(2), p.79-93. (In Persian)
  40. Ramak, H., Soyuf Jahromi, M. and Akbari, P., (2022a), Persian Gulf Water mass tracking by surface temperature and salinity properties, Journal of Oceanography,12(48), p.13-28. (In Persian) DOI: 10.52547/joc.12.48.13
  41. Ramak, H., Soyuf Jahromi, M. and Akbari, P., (2022b), Persian Gulf Water mass tracking by surface temperature and salinity properties, Journal of Oceanography,12(48), p.13-28. (In Persian) DOI: 10.52547/joc.12.48.13
  42. Ramak, H., Soyuf Jahromi, M. and Akbari, P., (2023a) Investigating the downwelling of Persian Gulf Water in the Gulf of Oman. International Journal Of Coastal, Offshore And Environmental Engineering (ijcoe), Vol.8(1), p.1-9. DOI: 10.22034/ijcoe.2023.166317
  43. Ramak, H., Soyuf Jahromi, M. and Akbari, P., (2023b), Investigation of salinity and temperature of Persian Gulf water by FVCOM Model. Journal of Oceanography, Vol.13 (52), p.106-120, (In Persian) DOI: 10.52547/joc.13.52.8
  44. Lashkari, S., Soyuf Jahromi, M., and Hamzei, S., (2023), Seasonal changes of the Persian Gulf water mass in the Gulf of Oman. Journal of Oceanography, 14 (53) :103-122, (In Persian) DOI: 10.52547/joc.14.53.9
  45. ROPME, 2004. State of the Marine Environment Report, 003. The Regional Organization for the Protection of the Marine Environment (ROPME)-Kuwait, p.217.
  46. Soyuf Jahromi, M., Sadrinasab, M. Aliakbari Bidokhti, A.A., (2014), 3D simulation of measured Oman data at late winter, 2005. Journal of Marine Science and Technology, Vol.13(3), p.21-31. (In Persian), DOI: 10.22113/jmst.2014.7821
  47. Lashkari, S., Soyuf Jahromi, M., and Hamzei, S., (2022), The temperature changes of WOA data in upper layers of Gulf of Oman. 1st international marine science conference with the approach of innovation in aquatic ecosystems based on sea-based economy, p.383-395. (In Persian)
  48. Al-Majed, N. and Preston, M., (2000), An assessment of the total and methyl mercury content of zooplankton and fish species tissue collected from Kuwait territorial waters. Marine Pollution Bulletin, Vol.40(4), p.298–307. DOI: 10.1016/s0025-326x(99)00217-9
  49. Mohammadpoor, F., Soyuf Jahromi, M., and Hamzei, S., (2022), Comparison of the vertical temperature distribution on the east of the strait of Hormuz. 1st international marine science conference with the approach of innovation in aquatic ecosystems based on sea-based economy, p.176-188. (In Persian)
  50. Mohammadpour, F., Soyuf Jahromi, M. and Hamzei, S., (2023), Winter study of the stability and Double diffusion convection in the east of the Strait of Hormuz, Hydrophysics,8(2), p.79-93. (In Persian)
  51. Defant A., (1960), Physical Oceanography, (Pergamon Press LTD) Vol. 2, p. 571.
  52. Hunter, J.R., (1982), The physical oceanography of the Arabian Gulf: a review and theoretical interpretation of previous observations. 1st Arabian Gulf conference on marine environment and pollution. Kuwait University, Faculty of Science, Kuwait, p. 1-23.
  53. Soyuf Jahromi, M. and Emami, M., (2021), The role of different positions of tidal turbines for energy extraction in Qeshm channel. International Journal Of Coastal, Offshore And Environmental Engineering(ijcoe), Vol.6(5), p.1-9. DOI: 10.22034/ ijcoe.2021.152602.
  54. Lehr, W.J., (1984), A brief survey of oceanographic modelling and oil spill studies in the KAP region. NESCO Reports in Marine Science, Vol.28, p.4–11.
  55. Najafi, H.S. (1979), Modelling tides in the Persian Gulf using dynamic nesting, PhD thesis, University of Adelaide, Adelaide, South Australia.
  56. Lardner, R.W., Belen, M.S. and Cekirge. H.M., (1982), Finite difference model for tidal flows in the Arabian Gulf. Computers & Mathematics with Applications, Vol.8(6), p.425–444. DOI: 10.1016/0898-1221(82)90018-9
  57. Teubner, M.D., Najafi, H.S., Noye, B.J. and Rasser, P.E., (1999), Modelling tides in the Persian Gulf using dynamic nesting, Modelling Coastal Sea Processes, p.57-80. DOI: 10.1142/9789814350730_0003
  58. http://iranhydrography.ncc.org.ir
  59. Bowen, A.J., (1972), The tidal regime of the River Thames; long-term trends and their possible causes, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol.272(1221), p.187-199. DOI: 10.1098/rsta.1972.0045
  60. Amin, M., (1983), On perturbations of harmonic constants in the Thames Estuary. Geophysical Journal International, Vol.73(3), p.587-603. DOI: 10.1111/j.1365-246x.1983.tb03334.x
  61. Jay, D.A., Leffler, K. and Degens, S., (2011), Long-term evolution of Columbia River tides, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol.137(4), p.182-191. DOI: 10.1061/(asce)ww.1943-5460.0000082
  62. Vellinga, N.E., Hoitink, A.J.F., van der Vegt, M., Zhang, W. and Hoekstra, P., (2014), Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine–Meuse delta, Coastal Engineering, Vol.90, p.40–50. DOI: 10.1016/j.coastaleng.2014.04.005
  63. Chernetsky, A.S., Schuttelaars, H.M. and Talke, S.A., (2010), The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dynamics, Vol.60(5), p.1219-1241. DOI: 10.1007/s10236-010-0329-8
  64. Familkhalili, R. and Talke S.A., (2016), The Effect of Channel Deepening on Storm Surge: Case Study of Wilmington, NC, Geophysical Research Letters, Vol.43(17), p.9138-9147. DOI: 10.1002/2016gl069494
  65. Colossi, J.A. and Munk, W., (2006), Tales of the Venerable Honolulu Tide Gauge, Journal of Physical Oceanography, Vol.36(6), p.967–996, DOI: 10.1175/jpo2876.1
  66. Müller, M., Cherniawsky, J.Y., Foreman, M.G.G. and Storch J.S. (2012), Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, Vol.39(19), p.L19607. DOI: 10.1029/2012gl053320
  67. Forrester, W.D., (1983), Tidal analysis and prediction, In: Canadian tidal manual. Ottawa, Ont. Department of Fisheries and Oceans, Canada, p.39-54.
  68. Pawlowicz, R., (2002), Observations and linear analysis of sill‐generated internal tides and estuarine flow in Haro Strait, Journal of Geophysical Research: Oceans, Vol.107(C6), p.9-1. DOI: 10.1029/2000jc000504
  69. Pawlowicz, R., Beardsley, B. and Lentz, S., (2002), Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, Vol.28(8), p.929-937. DOI: 10.1016/s0098-3004(02)00013-4
  70. http://www.eos.ubc.ca/~rich/t_tide/t_tide_v1.3beta.zip
  71. Desyari, M., (2019), Analisis Karakteristik Pasang Surut Perairan Dermaga Tempat Pelelangan Ikan (TPI) Palopo Sulawesi Selatan dengan Menggunakan Metode Admiralty, T-Tide, TMD, dan NAOTide, PhD thesis, Universitas Brawijaya- Brawijaya.
  72. Hennon, T.D., Alford, M.H. and Zhao, Z., (2019), Global assessment of semidiurnal internal tide aliasing in Argo profiles. Journal of Physical Oceanography, Vol.49(10), p.2523-2533. DOI: 10.1175/jpo-d-19-0121.1.
  73. Suharyo, O. S., Setiadi, J., Sukoco, N. B., & Kuncoro, K. (2020). The analysis formulation of the Lowest Astronomical Tide (LAT) based on the time observation (The case study of Benoa Waters). Journal ASRO, Vol.11(1), p.77-87. DOI: 10.37875/asro.v11i1.205
  74. Marques, O.B., Alford, M.H., Pinkel, R., MacKinnon, J.A., Klymak, J.M., Nash, J.D., Waterhouse, A.F., Kelly S.M., Simmons, H.L. and Braznikov, D., (2021), Internal tide structure and temporal variability on the reflective continental slope of Southeastern Tasmania. Journal of Physical Oceanography, Vol.51(2), p.611-631. DOI: 10.1175/jpo-d-20-0044.1
  75. Wan, Y., (2023), Harmonic analysis in tide analysis. 2nd International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022), Vol.12597, p.768-774.
  76. The MathWorks Inc. (2016), MATLAB and Statistics Toolbox 64-bit, Version 2016a, Release 2016a, Natick, Massachusetts, USA.
  77. Foremann, M., (1977). Manual for tidal heights analysis and prediction, Pacific marine science report, Vol.10, p.66-77.
  78. Stal, C., Poppe, H., Vandenbulcke, A. and De Wulf, A., (2016), Study of post-processed GNSS measurements for tidal analysis in the Belgian North Sea. Ocean Engineering, Vol.118, p.165-172. DOI: 10.1016/j.oceaneng.2016.04.014
  79. Lin, H., Hu, J., Zhu, J., Cheng, P., Chen, Z., Sun, Z., and Chen, D., (2017), Tide-and wind-driven variability of water level in Sansha Bay, Fujian, China. Frontiers of Earth Science, Vol.11(2), p.332-346. DOI: 10.1007/s11707-016-0588-x
  80. Soyuf Jahromi, M. and Shahmansoori, Z. (2021), The monthly sea-level anomaly patterns on the Persian Gulf. Iranian journal of Marine technology, Vol.7(4), p.97-106. (In Persian)
  81. Soyuf Jahromi, M. and Shahmansoori, Z. (2022), The seasonal changes of sea-level anomalies on the Persian Gulf (1993-2017). Journal of Marine Science and Technology, Vol.21(1), p.1-15. (In Persian) DOI: 22113/jmst.2021.197166.2303
  82. Lisitzin, E., (1974), Sea-level changes: Elsevier Oceanography Series (Vol. 8).
  83. Pugh, D., (1987), Tides, Surges and Mean Sea Level: A Handbook for Engineers and Scientists. John Wiley & Sons,
  84. Pugh, D., (2004), Changing Sea Levels-Effects of Tides, Weather and Climate. Cambridge University Press, Cambridge.
  85. Yeknami, S.R., Soltanpour, M., and Ranji, Z. (2016). Analysis of nearshore local effects on tidal behaviour at imam Khomeini port and Musa bay. Coastal Engineering Proceedings, Vol.(35), p.7-7. DOI: 10.9753/icce.v35.currents.7
  86. Emami, M., Soyuf Jahromi, M. and Behmanzadegan, A., (2019), Coastline Effect on Tidal Flow Pattern. Journal of Marine Science and Technology, Vol.18(2), p.12-25. (In Persian), DOI:0.22113/jmst.2019.122581.2137