Sensitivity Analysis of Makran Subduction Zone's Seismic Parameters for Optimizing the Number of Potential Tsunami Scenarios

Document Type : Original Research Article


1 Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran

2 Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran,


Given the necessity of knowing the risk of future tsunamis in actions related to tsunami hazard mitigation, the Probabilistic Tsunami Hazard analysis (PTHA) approach has been accepted as the basis for tsunami risk assessment studies for high-risk areas such as the Makran region. Considering the uncertainties associated with fault parameters and the random nature of earthquake in PTHA, simulation a large number of potential tsunami scenarios is required in future tsunami studies of the Makran Subduction Zone (MSZ). To optimize the number of scenarios in these studies, appropriate values for the ranges and change intervals of some uncertain seismic parameters in different scenarios are determined in the present study. For this, the values used in previous studies for earthquake magnitude and depth as well as dip and rake angles of MSZ's tsunamigenic earthquakes are investigated; and the effects of variations in these parameters on the tsunami waves are evaluated through numerical modeling and sensitivity analysis.

The results show a minimum value of Mw0.1 for the interval of earthquake magnitude variations must set in developing potential tsunami scenarios. Also, considering two or three values in the range of 2º to 20º and 10km to 30km, respectively, as probable values for the dip angle of the MSZ and the depth of tsunamigenic earthquakes seems sufficient. However, if the minimum number of scenarios is desired, selecting a unit value for the dip angle in the range of 10º to 15º and a constant earthquake depth of 10km can be acceptable.


Main Subjects

  1. National Centers for Environmental Information (NCEI) (2017), NGDC/WDS Global Historical Tsunami Database.
  2. Heck, N. H. (1947). List of seismic sea waves. Bulletin of the Seismological Society of America, 37(4), 269-286.
  3. Rashidi, A., Shomali, Z. H., Dutykh, D., & Keshavarz Farajkhah, N. (2020). Tsunami hazard assessment in the Makran subduction zone. Natural Hazards, 100(2), 861-875.
  4. Rajendran, C. P., Rajendran, K., Shah-Hosseini, M., Beni, A. N., Nautiyal, C. M., & Andrews, R. (2013). The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea. Natural hazards, 65, 219-239.
  5. Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., & Yalciner, A. C. (2009). Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 48, 229-243. 1007/s11069-008-9259-x
  6. Neetu, S., Suresh, I., Shankar, R., Nagarajan, B., Sharma, R., Shenoi, S. S. C., ... & Sundar, D. (2011). Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling. Natural Hazards, 59, 1609-1618.
  7. Rastgoftar, E., & Soltanpour, M. (2016). Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide. Natural Hazards, 83, 929-945.
  8. Heidarzadeh, M., & Satake, K. (2017). A combined earthquake–landslide source model for the Tsunami from the 27 November 1945 M w 8.1 Makran earthquake. Bulletin of the Seismological Society of America, 107(2), 1033-1040. ttps://
  9. Momeni, P., Goda, K., Heidarzadeh, M., & Qin, J. (2020). Stochastic analysis of tsunami hazard of the 1945 Makran subduction zone Mw 8.1–8.3 earthquakes. Geosciences, 10(11), 452.
  10. Honarmand, M., Shanehsazzadeh, A., & Zandi, S. M. (2020). 3D numerical simulation of tsunami generation and propagation, case study: Makran tsunami generation and penetrating in Chabahar Bay. Ocean Engineering, 218, 108109.
  11. Heidarzadeh, M., Pirooz, M. D., & Zaker, N. H. (2009). Modeling the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Engineering, 36(5), 368-376.
  12. Swapna, M., & Srivastava, K. (2014). Effect of Murray ridge on the tsunami propagation from Makran subduction zone. Geophysical Journal International, 199(3), 1430-1441.
  13. Akbarpour Jannat, M. R., Rastgoftar, E., & Asano, T. (2017). Tsunami assessment for inundation risk management at chabahar bay facilities in Iran. International Journal of Coastal and Offshore Engineering, 1(2), 27-39.
  14. Heidarzadeh, M., & Kijko, A. (2011). A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural hazards, 56, 577-593.
  15. Salah, P., Sasaki, J., & Soltanpour, M. (2021). Comprehensive probabilistic tsunami hazard assessment in the Makran subduction zone. Pure and Applied Geophysics, 1-23.
  16. Zoljoodi, M., & Zoljoodi, R. (2020). Executive management engineering plans for comparison with tsunami damage. International Journal of Coastal, Offshore and Environmental Engineering, 5(4), 19-23.
  17. American Society of Civil Engineers. (2017, June). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers.
  18. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
  19. Haberland, C., Mokhtari, M., Babaei, H. A., Ryberg, T., Masoodi, M., Partabian, A., & Lauterjung, J. (2021). Anatomy of a crustal-scale accretionary complex: Insights from deep seismic sounding of the onshore western Makran subduction zone, Iran. Geology, 49(1), 3-7.
  20. Noson, L. L., Qamar, A., & Thorsen, G. W. (1988). Washington State Earthquake Hazards. Washington State Department of Natural Resources, Washington Division of Geology and Earth Resources Information Circular 85.
  21. Frohling, E., & Szeliga, W. (2016). GPS constraints on interplate locking within the Makran subduction zone. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205(1), 67-76.
  22. Smith, G. L., McNeill, L. C., Wang, K., He, J., & Henstock, T. J. (2013). Thermal structure and megathrust seismogenic potential of the Makran subduction zone. Geophysical Research Letters, 40(8), 1528-1533.
  23. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
  24. Byrne, D. E., Sykes, L. R., & Davis, D. M. (1992). Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. Journal of Geophysical Research: Solid Earth, 97(B1), 449-478.
  25. Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., & Synolakis, C. E. (2009). Evaluating tsunami hazard in the northwestern Indian Ocean. Tsunami Science Four Years after the 2004 Indian Ocean Tsunami: Part I: Modelling and Hazard Assessment, 2045-2058.
  26. Rajendran, C. P., Ramanamurthy, M. V., Reddy, N. T., & Rajendran, K. (2008). Hazard implications of the late arrival of the 1945 Makran tsunami. Current Science (00113891), 95(12).
  27. Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., & Mokhtari, M. (2007). Modeling the 1945 Tsunami in the south coast of Iran. the 3rd National Congress of Civil Engineering (in Persian)
  28. Gica, E. (2008). Development of the forecast propagation database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT).
  29. Schlüter, H. U., Prexl, A., Gaedicke, C., Roeser, H., Reichert, C., Meyer, H., & Von Daniels, C. (2002). The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes. Marine Geology, 185(3-4), 219-232.
  30. Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142(3), 684-702.
  31. Synolakis, C. E., Chen, W. F., & Scawthorn, C. (2003). Tsunami and Seiche in Earthquake Engineering Handbook.
  32. Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157-171.