Investigation on the seasonal transformation of Tiab estuary’s shoreline using RS and GIS techniques

Document Type : Original Research Article

Authors

1 Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran

2 Center Providing Consultation and Simulation Services for Coastal And Marine Environments, Bandar Abbas, Iran

3 Hormozgan Province Ports & Maritime Authority, Shahid Rajaee Port Complex, Bandar Abbas, Iran

Abstract

Estuaries are transition zones between the sea and land, and are constantly affected by tides. These areas are biologically important and sensitive. Tiab estuary, 7 km from away from the coast of Strait of Hormuz, is covered with mangroves and is also used for navigation by small commercial boats. This estuary is facing sedimentation issues nowadays which troubled navigation of vessels. Since the local wind conditions of the area is different seasonally, the influence of this difference on the transformation of the shoreline is considered for the years 2019 and 2020. The wind direction in the area is mainly SSW during summer, while is totally diverse during winter. Sentinel-2 satellite images have been used with similar water-level conditions. Normalized Difference Water Index and K-means algorithm are used for shoreline detection. The results show that the area of the estuary is more than 10 hectares smaller in summertime than in wintertime. The correlation coefficient of the seasonal transformation of the shoreline in 2019 and 2020 is 0.84, which shows that the seasonal transformation was similar in the two years. Shoreline transformation was at most along the curvatures of the river, whether in upstream or downstream. It was however varied between 45 and 200m. Some dissimilarity in shoreline transformation was detected between the two years of study, specifically in upstream of the river, which is suggested to be due to human activities. It is believed that those parts of the estuary with high transformation are subject to permanent transformation in long term.

Keywords

Main Subjects


  1. Ahmed, K. R., & Akter, S. (2017). Analysis of landcover change in southwest Bengal delta due to floods by NDVI, NDWI and K-means cluster with Landsat multi-spectral surface reflectance satellite data. Remote Sensing Applications: Society and Environment, 8, 168–181.
  2. Al-doski, J., Mansor, S. B., Zulhaidi, H., & Shafri, M. (2013). Image Classification in Remote Sensing (Vol. 3, Issue 10, pp. 141–148).
  3. Barsi, J. A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M. O., Kaewmanee, M., Leigh, L., & Markham, B. L. (2018). Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. In Eur. J. Remote Sens. (Vol. 51, Issue 1, pp. 822–837). https://doi.org/10.1080/22797254.2018.1507613
  4. Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214(4 (214)), 688–703. https://doi.org/10.2112/03-0071.1
  5. Bolbasova, L. A., Shikhovtsev, A. Y., Kopylov, E. A., Selin, A. A., Lukin, V. P., & Kovadlo, P. G. (2019). Daytime optical turbulence and wind speed distributions at the Baikal Astrophysical Observatory. Monthly Notices of the Royal Astronomical Society, 482(2), 2619–2626. https://doi.org/10.1093/mnras/sty2706
  6. Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., & Ruescas, A. (2016). Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. ESASP, 740, 54.
  7. Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data. CRC Press. https://doi.org/10.1201/9780429052729
  8. Cowart, L., Corbett, D. R., & Walsh, J. P. (2011). Shoreline Change along Sheltered Coastlines: Insights from the Neuse River Estuary, NC, USA. Remote Sensing, 3(7), 1516–1534. https://doi.org/10.3390/rs3071516
  9. Dereli, M. A., & Tercan, E. (2020). Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey. Earth Sci. Inf., 13(3), 709–718. https://doi.org/10.1007/s12145-020-00460-x
  10. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
  11. Ershadi, S., Arasteh, M., & Tajziehchi, M. (2013). Numerical Modeling of Flow Pattern Changes in Tidal Inlet of TIYAB Port. Journal of Environmental and Earth Sciences, 11, 691–702.
  12. (2020). Copernicus Open Access Hub of the ESA. https://scihub.copernicus.eu/
  13. (2021). Expectation maximization (em) cluster analysis. ESA. https://www.brockmann-consult.de/beam/doc/help/clusteranalysis/EM.html
  14. Farahani, F., Farmohammadi, S. A., Golkhoo, S., & others. (2006). Isolation of new isolate of micro algae Chlorella sp. Al-25 from Tiab estuary of Iran.
  15. Fayyaz, M., Shafieefar, M., & Dastgheib, A. (2019). Evaluation of the effects of sediment characteristics on long-term estuarine morphological modelling driven by waves and tides. Applied Ocean Research, 92, 101919. https://doi.org/10.1016/j.apor.2019.101919
  16. French, P. (2002). Coastal and estuarine management. Routledge.
  17. Ghaderi, D., & Rahbani, M. (2020a). Detecting shoreline change employing remote sensing images (Case study: Beris Port-east of Chabahar, Iran). Int. J. Coastal Offshore Eng., 3, 1–8. https://doi.org/10.29252/ijcoe.3.4.1
  18. Ghaderi, D., & Rahbani, M. (2020b). Shoreline change analysis along the coast of Bandar Abbas city, Iran using remote sensing images. Int. J. Coastal Offshore Eng., 4(2), 51–64. http://ijcoe.org/article-1-214-en.html
  19. Ghaderi, D., & Rahbani, M. (2021). Tracing suspended matter in Tiab estuary applying ANN and Remote sensing. Regional Studies in Marine Science, 44, 101788. https://doi.org/10.1016/j.rsma.2021.101788
  20. Ghaderi, D., & Rahbani, M. (2022). Mud volcano as a feature of emergence in Caspian Sea. Oceanologia. https://doi.org/10.1016/j.oceano.2022.03.006
  21. GHANBARI, F. M., & MALEK, M. (2007). Permanent intertidal fish from the Persian Gulf and Gulf of Oman, Iran.
  22. Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital shoreline analysis system (DSAS) version 5.0 user guide. https://doi.org/https://doi.org/10.3133/ofr20181179
  23. Islam, M. S., Uddin, M. A., & Hossain, M. A. (2021). Assessing the dynamics of land cover and shoreline changes of Nijhum Dwip (Island) of Bangladesh using remote sensing and GIS techniques. Reg. Stud. Mar. Sci., 41, 101578. https://doi.org/10.1016/j.rsma.2020.101578
  24. Kamranzad, B. (2018). Persian Gulf zone classification based on the wind and wave climate variability. Ocean Engineering, 169, 604–635. https://doi.org/10.1016/j.oceaneng.2018.09.020
  25. Li, Y., & Wu, H. (2012). A Clustering Method Based on K-Means Algorithm. In Physics Procedia (Vol. 25, pp. 1104–1109). https://doi.org/10.1016/j.phpro.2012.03.206
  26. Liu, C., Frazier, P., & Kumar, L. (2007). Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606–616. https://doi.org/10.1016/j.rse.2006.10.010
  27. Mao, Q., Shi, P., Yin, K., Gan, J., & Qi, Y. (2004). Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16), 1797–1808. https://doi.org/10.1016/j.csr.2004.06.008
  28. McFEETERS, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens., 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
  29. Mitri, G., Nader, M., Abou Dagher, M., & Gebrael, K. (2020). Investigating the performance of sentinel-2A and Landsat 8 imagery in mapping shoreline changes. Journal of Coastal Conservation, 24(3), 1–9.
  30. Moser, G. (2002). Unsupervised change-detection methods for remote-sensing images. Opt. Eng., 41(12), 3288. https://doi.org/10.1117/1.1518995
  31. Muskananfola, M. R., Supriharyono, & Febrianto, S. (2020). Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System. Regional Studies in Marine Science, 34, 101060. https://doi.org/10.1016/j.rsma.2020.101060
  32. Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., & Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesour. Geotechnol., 37(1), 81–95. https://doi.org/10.1080/1064119X.2018.1448912
  33. Nath, A., Koley, B., Saraswati, S., Choudhury, T., Um, J.-S., & Ray, B. C. (2022). Geospatial analysis of short term shoreline change behavior between Subarnarekha and Rasulpur estuary, east coast of India using intelligent techniques (DSAS). GeoJournal. https://doi.org/10.1007/s10708-022-10683-8
  34. Oliver, A., Muñoz, X., Batlle, J., Pacheco, L., & Freixenet, J. (2006). Improving clustering algorithms for image segmentation using contour and region information. In 2006 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR (Vol. 2). https://doi.org/10.1109/AQTR.2006.254652
  35. Patel, K., Jain, R., Patel, A. N., & Kalubarme, M. H. (2021). Shoreline change monitoring for coastal zone management using multi-temporal Landsat data in Mahi River estuary, Gujarat State. Applied Geomatics, 13(3), 333–347. https://doi.org/10.1007/s12518-021-00353-8
  36. Pereira-Sandoval, M., Ruescas, A., Urrego, P., Ruiz-Verdú, A., Delegido, J., Tenjo, C., Soria-Perpinyà, X., Vicente, E., Soria, J., & Moreno, J. (2019). Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens., 11(12), 1469. https://doi.org/10.3390/rs11121469
  37. Pôssa, É. M., Maillard, P., Gomes, M. F., Silva, I., & Leão, G. (2018). On water surface delineation in rivers using Landsat-8, Sentinel-1 and Sentinel-2 data. In C. M. Neale & A. Maltese (Eds.), Proc. SPIE Oct. (Vol. 10783, p. 45). SPIE. https://doi.org/10.1117/12.2325725
  38. Rosenfield, G. H., & Fitzpatrick-Lins, K. (1986). A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens., 52(2), 223–227.
  39. Schoellhamer, D. H. (2002). Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Continental Shelf Research, 22(11–13), 1857–1866. https://doi.org/10.1016/S0278-4343(02)00042-0
  40. Spinosa, A., Ziemba, A., Saponieri, A., Damiani, L., & El Serafy, G. (2021). Remote Sensing-Based Automatic Detection of Shoreline Position: A Case Study in Apulia Region. J. Mar. Sci. Eng., 9(6), 575. https://doi.org/10.3390/jmse9060575
  41. Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change. https://doi.org/https://doi.org/10.3133/ofr20081278
  42. Warnasuriya, T. W. S., Kumara, M. P., Gunasekara, S. S., Gunaalan, K., & Jayathilaka, R. M. R. M. (2020). An Improved Method to Detect Shoreline Changes in Small-Scale Beaches Using Google Earth Pro. Marine Geodesy, 43(6), 541–572. https://doi.org/10.1080/01490419.2020.1822478
  43. Wu, J., & Shi, Y. (2022). Changes in surface wind speed and its different grades over China during 1961–2020 based on a high‐resolution dataset. International Journal of Climatology, 42(7), 3954–3967. https://doi.org/10.1002/joc.7453