Science behind global sea level and sea level rise for global warming and polar ice-melt: myths and reality

Document Type : Original Article

Author

Dept. of Oceanography and Hydrography, Faculty of Earth and Ocean Science, BSMR Maritime University, Dhaka, Bangladesh

Abstract

Global sea level rise of 1.5 meter by 2100 AD due to global warming and polar ice-melt has emerged as a concept and not a science. Ocean thermal expansion responsible for sea level rise has also emerged as a myth. Warming of ocean surface can produce water vapor by evaporation which is not the volumetric expansion of ocean water to raise sea level. More the thermal heating of the ocean surface water more will be the evaporation from the ocean that negates volumetric expansion of the ocean water. Global warming can alleviate ocean temperature not to expand ocean water. Global scale ocean temperature measures 28oC upto the depth of 40 m only. Below this depth temperature drastically decreases almost to 6oC at 1000 m depth trending further decrease. Science behind melting of the polar floating ice-blocks supports reoccupation of the same occupied volume of the floating ice without sea level rise. Ice-melting further reduces load from the crust of the Earth to elastically rebound for attaining isostatic equilibrium preventing sea level rise. Paleo-sea level markers in the sediment deposits occur due to the crustal subsidence and uplift for transgression and regression respectively. Prograding delta can result in apparent sea-level drop showing retreat of the sea. Geophysical spheroidal shape of the earth with equatorial bulge and polar flattening maintain a perfect hydrostatic equilibrium condition. Maximum centrifugal force and minimum gravity attraction can allow sea level to occur at about 21 km higher in the equatorial region than in the polar region preventing sea-level fluctuation. 

Keywords


  1. IPCC Climate Change, 2013. The physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  2. Church, J.A., Clark, P.U., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., Unnikrishnan, A., 2013. Sea level change. Climate change 2013: the physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambr. Univ. Press, Cambridge, pp. 1137-1216. https://doi.org/10.1017/CBO9781107415324.026.
  3. Church, J.A., White, N.J., 2006. A 20th century acceleration in global sea-level rise. Geophy. Res. Lets., 33 (1). https://doi.org/10.1029/2005GL024826.
  4. Jevrejeva, S., Grinsted, A., Moore, J.C., 2009. Anthropogenic forcing dominates sea level rise since 1850. Geophy. Res. Lets., 36, L20706.
  5. https://doi.org/10.1029/2009GL040216.
  6. Mann, M.E., Bradley, R.S., Hughes, M.K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. NATURE 392, 779-787.
  7. Lombard, A., Cazenave, A., Le Traon, P.Y., Ishii, M., 2005. Contribution of thermal expansion to present-day sea level rise revisited. Glob. Plane. Chan., 47, 1-16.
  8. Lombard, A., Cazenave, A., Le Traon, P.Y., Guinehut, S., Cabanes, C., 2006. Perspectives on present-day sea level change: a tribute to Christian le Provost. Ocean Dynamics 56 (5-6), 445-451. https://doi.org/10.1007/s10236-005-0046-x
  9. Bindoff, N.L., J. Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D.Talley and A. Unnikrishnan, 2007: Observations: Oceanic Climate Change and Sea Level. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge Univ Press, Cambridge, United Kingdom and New York, NY, USA.
  10. Rovere, A., Stocchi, P., Vacchi, M., 2016. Eustatic and Relative Sea Level Changes. Cur. Clim. Change Rep. https://doi.org/10.1007/s40641-016-0045-7.
  11. Julia Pfeffer, J., Allemand, P., 2015. Contribution of vertical land motions to relative sea level variations: a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Eart. Plane. Sci. Lets. 439, 39-47.
  12. Hay, C.C., Morrow, E., Kopp, R.E., Mitrovica, J.X., 2015. Probabilistic reanalysis of twentieth-century sea-level rise. NATURE 517, 481-484.
  13. Telford, W.M., Geldart, L.P., Sheriff, R.E., Keys, D.A., 1976. Applied Geophysics. Camb. Univ. Press, 860 pp
  14. Kwok, R. and Rothrock, D. A., 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., v. 36, L15501, doi:10.1029/2009GL039035
  15. Dobrin, M.B., 1976. Intro. Geophy. Pros., 3rd McGraw-Hill, New York. 630pp.
  16. Lindsay, R., Schweiger, A., 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere 9, 269-283. https://doi.org/10.5194/tc-9-269-2015.
  17. Khan, A.A., 2019. Why would sea-level rise for global warming and polar ice-melt?. Geoscience Frontiers 10, 481- 494.
  18. Paulson, A., Zhong, S., Wahr, J., 2007. Inference of mantle viscosity from GRACE and relative sea level data. Geophy. J. Int., 171, 497-508. https://doi.org/10.1111/j.1365-246X.2007.03556.x.
  19. Zhang, J., 2007. Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. Am. Met. Soc., 20, 2515-2529.
  20. Barnett, T. P., 1985. Long term climatic change in observed physical properties of the oceans In Detecting the Climatic Effects of Increasing Carbon Dioxide (Eds. MC MacCracken and FM Luther) US DOE/ER 0235 pp 91-107
  21. Hegerl, G.C., F. W. Zwiers, P. Braconnot, N.P. Gillett, Y. Luo, J.A. Marengo Orsini, N. Nicholls, J.E. Penner and P.A. Stott, 2007: Understanding and Attributing Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the FAR of the IPCC [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambr. Univ. Press, Cambridge, United Kingdom and New York, NY, USA.
  22. Kemp, A.C., Dutton, A., Raymo, M.E., 2015. Paleo constraints on future sea level rise. Curr. Clim. Chan. Rep., 1, 205-215.
  23. Vail, P.R., Mitchum Jr., R.M., Thompson III, S., 1977. Seismic Stratigraphy and Global Changes of Sea Level: Part 4. Global Cycles of Relative Changes of Sea Level: Section 2. Application of Seismic Reflection Configuration to Stratigraphy Interpretation. AAPG Mem. Spec. Vol., p. 83-97.
  24. Khan, A.A., Akhter, S.H., Alam, S.M.M., 2000. In: Hosani, Mohamed and Al (Ed.), Evidence of Holocene Transgression, Dolomitization and the Source of Arsenic in the Bengal Delta. Geoengineering in Arid Lands. Balkema, Rotterdam, pp. 351-355.
  25. Mörner, N.-A., 2020. Sea Level Records on Ouvéa Island in New Caledonia. Nat. Sci., 2020, Vol. 12, (No. 6), pp: 329-359. https://www.scirp.org/journal/ns
  26. Mörner, N.-A., 2019a. Rotational Eustasy as Observed in Nature. Int. J. Geos., 10, 745-757. https://doi.org/10.4236/ijg.2019.107042
  27. Mörner, N.-A., 2018. Absolute Evidence of the Absence of an on-Going Sea Level Rise on Ouvéa Island of New Caledonia. SSRG Int. J. Geoinf. Geol. Sci. (SSRG – IJGGS) – Volume 5, Issue 3, p. 30-33
  28. Mörner, N.-A., 2010. Sea level changes in Bangladesh: New observational facts. Ener. Env., 21(3), 235–249.
  29. Mörner, N.-A., 2019b. Biology and Shore Morphology: Keys to proper reconstruction of sea level changes, J. Marn. Biol. Aquas. Doi: http://dx.doi.org/ 10.31579/ 26415143/JMBA.2019 /020
  30. Loveson, V.J.; Gujar, A.R.; Iyer, S.D.; Udayaganesan, P.; Luis, R.A.A.; Gaonkar, S.S.; Chithrabhanu, P.; Torodkar, G.M., and Singhvi, A.K., 2014. Beach dynamics and oscillations of shoreline position in recent years at Miramar Beach, Goa, India: A study from GPR survey. Nat. Haz., 73(3), 2089–2106. doi:10.1007/s11069-014-1175-7.
  31. Mörner, N.-A., 2017. Coastal morphology and sea-level changes in Goa, India during the last 500 years. J. Coastal Res., 33(2), 421–434. Coconut Creek (Florida), ISSN 0749-0208.
  32. Ampou, E.E., Johan, O., Menkes, C.E., Niño, F., Birol, F., Ouillon, S., and Andréfouët, S., 2017. Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall. Biogeosciences, 14, 817-826.