Renewable Energy Production by Microalgae; A review

Document Type : Original Research Article


Faculty of marine science, Chabahar maritime university


Biofuels are the up and coming alternative to exhaustible, inenvironmentally and unsafe fossil fuels. Microalgae as a source of biofuels have been widely studied for biodiesel/biogas/biohydrogen/biochar/bioelectricity production and has been gathering much contemplation right away. Increasing in energy demand and in greenhouse gas emission makes it important to develop alternative energy carriers that are renewable, clean and environmentally friendly. The use of arable land for biofuels in some cases has been associated with food insecurities and increased greenhouse gases caused by indirect land use change effects. Microalgae can grow on land not suitable for agriculture and would alleviate these concerns. The high lipid and mineral contents of microalgae render it beneficial for the production of biofuels and value-added products. On the other hand, result in to the reducing pollution and protecting the environment, because as a result of generating electricity in fuel cells or mechanical force in blast engines, the only output is water vapor. This review focuses on the current scenario and future prospects of microalgae aimed at biofuel production and the technologies available for converting the biomass produced into biofuel are analyzed. The goal of this work was to give a comprehensive review on biofuel production from microalgae biomass.


1- Meghnani, R., (2013). Microalgal Biofuels: A review, Recent Research in Science and Technology. 5(5), p. 59-60.
2- Amaro, H.M., Macedo, A.C. and Malcata, F.X., (2012). Microalgae: An alternative as sustainable source of biofuels? Energy, P.1-9.
3- Pereira, L., (2021). Algal Biofuels. 1st Edition. ISBN 9780367782108. Published March 31, 2021 by CRC Press, Talor & Francis group, A science publishers book, p. 212.
4- Suali, E. and Sarbatly, R., (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews. 16(6), 4316–4342.
5- Mehariya, S., Sharma, N., Iovine, A., Casella, P., Marino, T., Larocca, V., Molino, A., Musmarra, D., (2020). An Integrated Strategy for Nutraceuticals from Haematoccus pluvialis: From Cultivation to Extraction, Antioxidants, 9, 825.
6- Sanchez Rizza, L., Coronel, C.D., Sanz Smachetti, M.E., Do Nascimento, M., Curatti, L., (2019). A semi-closed loop microalgal biomass production-platform for ethanol from renewable sources of nitrogen and phosphorous. J. Clean. Prod., 219, p. 217–224.
7- Goswami, R.K., Mehariya, S., Verma, P., Lavecchia, R., Zuorro, A., (2021). Microalgae-based biorefineries for sustainable resource recovery from wastewater, J. Water Process. Eng., 101747.
8- Solé-Bundó, M., Garfí, M., Ferrer, I., (2020). Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Bioresour. Technol., 298, 122563.
9- Prabandono, K. and Amin, S., (2015), Biofuel production from microalgae, Handbook of marine microalgae, Elsevier, Amsterdam, p. 145–158.
10- Callegari, A., Bolognesi, S., Cecconet, D., Capodaglio, A.G., (2019). Production technologies, current role, and future prospects of biofuels feedstocks: a state-of-the-art review. Crit. Rev. Environ. Sci. Technol., 0, p. 1–53. doi:10.1080/10643389.2019.1629801.
11- Pan, S.-Y., Snyder, S.W., Packman, A.I., Lin, Y.J., and Chiang, P.-C., (2018). Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus, Water-Energy Nexus, 1, 26–41.doi: 10.1016/j.wen.2018.04.002.
12- Asongu, S.A., Agboola, M.O., Alola, A.A., and Bekun, F.V., (2020). The criticality of growth, urbanization, electricity and fossil fuel consumption to environment sustainability in Africa, Sci. Total Environ., 712, 136376. doi: 10.1016/j.scitotenv. 2019.136376.
13- IEA International Energy Agency, (2020). Available online at: (accessed November 28.
14- Goswami, R.K., Agrawal, K., Mehariya, S., Molino, A., Musmarra, D., Verma, P., (2020a). Microalgae-Based Biorefinery for Utilization of Carbon Dioxide for Production of Valuable Bioproducts. In Chemo-Biological Systems for CO2 Utilization, CRC Press: Boca Raton, FL, USA, p. 203–228.
15- Goswami, R.K., Mehariya, S., Obulisamy, P.K., Verma, P., (2020b). Advanced microalgae-based renewable biohydrogen production systems: A review, Bioresour. Technol., 320, 124301.
16- Ananthi, V., Raja, R., Carvalho, I.S., Brindhadevi, K., Pugazhendhi, A., Arun, A., (2021). A realistic scenario on microalgae based biodiesel production: Third generation biofuel, Fuel, 284, 118965.
17- Sanz Smachetti, M.E., Coronel, C.D., Salerno, G.L., Curatti, L., (2020). Sucrose-to-ethanol microalgae-based platform using seawater. Algal Res., 45, 101733 
18- Garoma, T. and Nguyen, D., (2016). Anaerobic Co-Digestion of Microalgae Scenedesmus sp. and TWAS for Biomethane Production, Water Environ. Res., 88, p.13–20.
19- Singh, N.K. and Dhar, D.W., (2011). Microalgae as second generation biofuel. A review. Agronomy Sust. Developm., 31, p. 605–629. DOI 10.1007/s13593-011-0018-0.
20- Li, X., Hu, H.Y., Gan, K. and Sun, Y.X., (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour, Technol., 101, p. 5494–5500.
21- Halim, R., Danquah, M.K. and Webley, P.A., (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances. 30(3), 709-732.
22- Behera, B., Acharya, A., Gargey, I.A., Aly, N.P.B., (2019). Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. Bioresour. Technol. Rep., 5, p. 297–316.
23- Sharma, K.K., Schuhmann, H. and Schenk, P.M., (2012). High lipid induction in microalgae for biodiesel production, Energies 5, 1532–53. 
24- Weldy, C.S. and Huesemann, M., (2013). Lipid production by Dunaliella salina in batch culture: Effect of nitrogen limitation & light, US-DOE. Undergrad Research, www.scied.sceince. accessed 1 November 2013.
25- Zewdie, D.T. and Ali, A.Y., (2020). Cultivation of microalgae for biofuel production: coupling with sugarcaneprocessing factories. Energy, Sustainability and Society, 10, 27, p. 16.
26- Mehariya, S., Patel, A.K., Obulisamy, P.K., Punniyakotti, E., Wong, J.W.C., (2018). Co-digestion of food waste and sewage sludge for methane production: Current status and perspective, Bioresour. Technol., 265, p. 519–531.
27- Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G., (2018). Biogas upgrading and utilization: Current status and perspectives, Biotechnol. Adv., 36, p.452–466.
28- Marín, D., Posadas, E., Cano, P., Pérez, V., Blanco, S., Lebrero, R., Muñoz, R., (2018). Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. Bioresour. Technol., 263, p.58–66.
29- Limongi, A.T., Viviano, E., Luca, M.D., Radice, R.P., Bianco, G. and Martelli, G., (2021). Biohydrogen from Microalgae: Production and Applications, Applied Science, 11, 1616. P.14.
30- Khosravitabar, F., (2020). Microalgal biohydrogen photoproduction: scaling up challenges and the ways forward, Journal of Applied Phycology volume 32, p. 277–289.

31- Sharma, A. and Arya, S.K., (2017). Hydrogen from algal biomass: A review of production process, Biotechnology Reports, Volume 15, September 2017, P. 63-69.

32- Nagarajan, D., Dong, C., Chen, C., Lee, D., Chang, J.-S., (2020). Biohydrogen production from microalgae—Major bottlenecks and future research perspectives, Biotechnol. J., e2000124.
33- Costa, C.D. and Hadiyanto, H., (2018). Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC), MATEC Web of Conferences, 156, 01017. 
34- Polontalo, N.F., Joelyna, F.A., Filardli, A.M.I., Hadiyanto, H. and Zakaria, Z.A., (2021). Microalgae Microbial Fuel Cell (MMFC) using Chlorella vulgaris and “Batik” Wastewater as Bioelectricity.
35- Wang, C.-T., Huang, Y.-S., Sangeetha, T., Chen, Y.-M., Chong, W.-T., Ong, H.-C.; Zhao, F., Yan, W.-M., (2018). Novel bufferless photosynthetic microbial fuel cell (PMFCs) for enhanced electrochemical performance,  Bioresour. Technol., 255, 8.
36- Kakarla, R. and Min, B., (2019). Sustainable electricity generation and ammonium removal by microbial fuel cell with a microalgae assisted cathode at various environmental conditions, Bioresour. Technol., 284, 161–167. 
37- Xu, C., Poon, K., Choi, M.M., Wang, R., (2015). Using live algae at the anode of a microbial fuel cell to generate electricity, Environ. Sci. Pollut. Res., 22, 15621–15635.
 38- Cheng, H.-H., Narindri, B., Chu, H., Whang, L.-M., (2020). Recent advancement on biological technologies and strategies for resource recovery from swine wastewater, Bioresour. Technol., 303, 122861.
39- Leng, L., Zhang, W., Leng, S., Chen, J., Yang, L., Li, H., Jiang, S., Huang, H., (2020). Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities, Sci. Total. Environ., 748, 142383.
40- Kannah, R.Y., Kavitha, S., Karthikeyan, O.P., Kumar, G., Dai-Viet, N.V., Banu, J.R., (2021). Techno-economic assessment of various hydrogen production methods—A review,. Bioresour. Technol., 319, 124175.
41- Jaiswal, K.K., Kumar, V., Vlaskin, M.S., Sharma, N., Rautela, I., Nanda, M., Arora, N., Singh, A. and Chauhan, P.K., (2020). Microalgae fuel cell for wastewater treatment: Recent advances and challenges, J. Water Process. Eng., 38, 101549.  
42- Mehariya, S., Goswami, R.K., Verma, P., Lavecchia, R. and Zuorro, A., (2021). Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries, Energies, 14, 2282.
43- Gurav, R., Bhatia, S.K., Choi, T.-R., Choi, Y.-K., Kim, H.J., Song, H.-S., Lee, S.M., Lee Park, S., Lee, H.S., Koh, J., et al., (2021). Application of macroalgal biomass derived biochar and bioelectrochemical system with Shewanella for the adsorptive removal and biodegradation of toxic azo dye, Chemosphere, 264, 128539.
44- Gan, Y.Y., Ong, H.C., Show, P.L., Ling, T.C., Chen, W.H., Yu, K.L., Abdullah, R., (2018). Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent, Energy Convers. Manag., 165, p.152–162.
45- Chorazy, T., Čáslavský, J., Žvaková, V., Raček, J., Hlavínek, P., (2019). Characteristics of Pyrolysis Oil as Renewable Source of Chemical Materials and Alternative Fuel from the Sewage Sludge Treatment, Waste and Biomass Valorization, doi:10.1007/s12649-019-00735-5.
46- Paz-Ferreiro, J., Nieto, A., Méndez, A., Askeland , M.P.J., Gascó, G., (2018). Biochar from biosolids pyrolysis: A review, Int J Environ Res Public Health, 15. doi:10.3390/ijerph15050956. 
47- Inguanzo, M., Dominguez, A., Menéndez, J.A., Blanco, C.G., Pis, J.J., (2002). On the Pyrolysis of Sewage  Sludge: The Influence of Pyrolysis Temperature on Biochar, Liquid and Gas Fractions, J Anal Appl Pyrolysis, 63, p.209–22. doi:10.4028/ 
48- Capodaglio, A.G. and Callegari, A., (2018). Feedstock and process influence on biodiesel produced from waste sewage sludge, Journal of Environmental Management, 216, pp. 176-182. doi: 10.1016/j.jenvman.2017.03.089.
49- Callegari, A., Hlavinek, P., Capodaglio, A.G., (2018).  Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Revista Ambiente e Agua, 13(2), p. 21-28. doi:10.4136/ambi-agua.2128. 
50- Yu, K.L., Show, P.L., Ong, H.C., Ling, T.C., Chi-Wei Lan, J., Chen, W.H., et al., (2017). Microalgae from wastewater treatment to biochar – Feedstock preparation and conversion technologies, Energy Convers Manag, 150, p.1–13. doi:10.1016/j.enconman.2017.07.060.  
51- Chisti, Y., (2008). Biodiesel from microalgae beats bioethanol, Trends Biotechnol, 26, p. 126–31. doi:10.1016/j.tibtech.2007.12.002.  
52- Reen, S., Chyuan, H., Wayne, K., Loke, P., Phang, S., Chuan, T., et al., (2018). Sustainable approaches for algae utilisation in bioenergy production, Renew Energy, 129, p.838–852. doi:10.1016/j.renene.2017.04.001.  
53- Chaiwong, K., Kiatsiriroat, T., Vorayos, N., Thararax, C., (2013). Study of bio-oil and bio-char production from algae by slow pyrolysis, Biomass and Bioenergy, 56, 600–6. doi:10.1016/j.biombioe.2013.05.035.  
54- Yang, C., Wang C., Li, R., Zhang, B., Qiu, Q., Wang, B., et al., (2019). Pyrolysis of microalgae : A critical review, 186, p.53–72. doi:10.1016/j.fuproc.2018.12.012. 
55- Rajagopal, R., Mousavi, S.E., Goyette, B. and Adhikary, S., (2021). Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts, Bioengineering, 8, 57. P.13.
56- Sánchez, A., Garc, M.C.C., Contreras, A., Garc, F., Molina, E., Chisti, Y., (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors, 16, p. 287–97. doi:10.1016/S1369-703X(03)00072-X
57- Milledge, j. and Heaven, S., (2013). A review of the harvesting of micro-algae for biofuel production. Reviews in Environmental Science and Bio/Technology, 12(2), p.165-178. DOI:10.1007/s11157-012-9301-z
58- Oumer, A., Hasan, M., Baheta, A.T., Mamat, R., and Abdullah, A., (2018). Biobased liquid fuels as a source of renewable energy: a review. Renew. Sust. Energ. Rev., 88, p. 82–98. doi: 10.1016/j.rser.2018.02.022.
59- Shuba, E.S. and Kifle, D., (2018). Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renew Sustain Energy Rev, 81, p. 743–55. doi:10.1016/j.rser.2017.08.042.
60- Singh, D. and Gonzales-Calienes, G. (2021). Chapter 11: Liquid Biofuels from Algae. In book: Algae (pp. 243-279). Springer Nature Singapore Pte Ltd., DOI:10.1007/978-981-15-7518-1_11
61- Wang, K., Shiong Khoo, K., Chew, K.W., Selvarajoo, A., Chen, W., Chang, J. and Show, P.L., (2021). Microalgae: The Future Supply House of Biohydrogen and Biogas, Frontiers in Energy Research, 9, p. 10.
62- Chisti, Y., (2007). Biodiesel from microalgae, Biotechnol Adv., 25 (3), 294–306. doi:10.1016/j.biotechadv., 2007.02.001. 
63- Illman, A.M., Scragg, A.H., Shales, S.W., (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzym Microb Technol., 27,631–635.
64- Khozin-Goldberg, I., Cohen, Z., Pimenta-Leibowitz, M., Nechev, J., Zilberg, D., (2006). Feeding with arachidonic acid-rich triacylglycerols from the microalga Parietochoris incisa increased recovery of guppies from infection with Tetrahymena sp., Aquaculture, 255,142–150. 
65- Metting F (1996). Biodiversity and application of microalgae, J Ind Microbiol Biotech., 17,477–489.
66- Solovchenko, A.E., Khozin-Goldberg, I., Cohen, Z., Merzlyak, M.N., (2009). Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incise, J Appl Phycol., 29,361–366.