
 INTERNATIONAL JOURNAL OF

COASTAL, OFFSHORE & ENVIRONMENTAL ENGINEERING

1

Available online at: www. Ijcoe.org

Hardware-Accelerated Image Moment Computation for UUV Navigation

Mehrnaz Monajati1

1 Assistant professor, Department of Electrical and Computer Engineering, Graduate University of

Advanced Technology, Kerman, Iran; m.monajati@kgut.ac.ir

ARTICLE INFO ABSTRACT

Article History:

Received: 01 May. 2023

Accepted: 05 Sep. 2023

Available online: 05 Jan. 2024

Image moments are pivotal in the control of Unmanned Underwater Vehicles

(UUVs), empowering them to extract valuable insights from onboard camera

images, identify objects, navigate autonomously, and adapt to evolving

environmental conditions. Integrating image moment analysis into UUV

control systems amplifies their effectiveness in exploration, research,

surveillance, and various underwater applications. However, the computational

demands of moment calculation algorithms pose challenges for real-time

implementation, particularly with higher moment orders. In this study, we

propose a novel structure based on systolic arrays, leveraging pipeline

technique, to compute moments up to the 14th order of grayscale images in real

time. Implemented in 45nm CMOS technology, our design demonstrates

impressive performance, with each cell capable of computing the 14th order

moment of a 1024×1024 image at a remarkable rate of 954 fps. Moreover, our

design boasts low power consumption, registering at only 3.254 mW,

demonstrating its potential for enhancing UUV control systems for diverse

underwater applications.

Keywords:

Unmanned Underwater Vehicles

(UUVs)

Image moment

Pipeline

Systolic array

Real time

1. Introduction
Unmanned Underwater Vehicles (UUVs) are

autonomous robotic vessels designed for underwater

operations without direct human control [1]. Equipped

with sensors and propulsion systems, they navigate

underwater environments, collect data, and perform

tasks across various fields including oceanographic

research, underwater mapping, marine biology,

defense, infrastructure inspection, and search and

rescue operations. UUVs offer a versatile platform for

exploration, research, security, and industrial

applications, contributing to our understanding and

utilization of the world's oceans [2].

Image moments are indispensable tools in the realm of

UUVs, playing a pivotal role in various aspects of their

operation [3]. These moments are integral to extracting

meaningful information from onboard camera images,

enabling UUVs to recognize objects, navigate

autonomously, and adapt to changing environmental

conditions. The incorporation of image moment

analysis into UUV control systems significantly

enhances their capabilities for exploration, research,

surveillance, and various underwater applications [3].

In feature extraction, image moments serve as essential

mathematical descriptors derived from pixel

intensities, providing valuable insights into an image's

shape, size, orientation, and object distribution [4].

This feature extraction process is particularly crucial

for UUV navigation, where visibility is often limited,

making it imperative to extract pertinent features from

onboard camera imagery for effective navigation and

obstacle avoidance.

Furthermore, image moments facilitate object

recognition and tracking, empowering UUVs to

identify and monitor objects of interest in their

surroundings [5]. This capability is essential for tasks

such as detecting underwater structures, monitoring

marine life, and identifying potential hazards. By

accurately recognizing and tracking objects, UUVs can

autonomously navigate through complex underwater

environments while adeptly avoiding obstacles.

Additionally, image moments contribute significantly

to localization and mapping efforts. Through the

analysis of moments extracted from successive images,

UUVs can estimate their position and orientation

relative to known landmarks or predefined maps. This

information is crucial for ensuring precise navigation

and achieving mission objectives, especially in

environments where GPS signals may be unreliable or

inaccessible [6].

Real-time implementation of image moments is crucial

for UUVs because it enables swift decision-making,

autonomous navigation, and obstacle avoidance in

underwater environments [6]. By analyzing visual data

2

in real-time, UUVs can recognize objects, track their

movements, and adjust their course accordingly,

ensuring efficient and safe operation. Additionally,

real-time processing enhances mission efficiency by

enabling prompt responses to changing conditions and

optimizing task execution. This capability not only

enhances the autonomy and reliability of UUVs but

also contributes to their overall safety and effectiveness

in diverse underwater applications [7].

An approach for swiftly computing Krawtchouk

moments in grayscale images, alongside rapid

calculation techniques for binary images is presented in

[8]. By decomposing 8-bit/pixel grayscale input images

into corresponding bitplanes represented by image

blocks, lower-order bitplanes exhibit a resemblance to

a half-intensity image. Consequently, only the

moments of higher-order bitplanes are computed, with

the least significant bitplanes replaced by half-intensity

images to significantly accelerate moment computation

while maintaining an acceptable error margin between

original and reconstructed images. Experimental

findings confirm the effectiveness of substituting the

lower 5 bitplanes with half-intensity images, resulting

in minimal error in reconstructed images and notable

acceleration in moment computation. Additionally, it

demonstrates rapid performance, achieving real-time

operation under typical conditions in pattern

recognition scenarios requiring a moderate number of

moment calculations in small-sized images.

In [9], researchers introduce an algorithm for

computing discrete image moments based on first-

order moments, achieved through a simple

mathematical deduction, enabling the utilization of a

fast algorithm for their calculation. Unlike

conventional methods relying on moment kernel

polynomials' properties, this approach allows for the

computation of any discrete image moments, offering

advantages such as a straightforward computation

structure, no need for multiplication operations,

independence from image intensity distribution, and

applicability to all discrete image moment families.

Additionally, they present a discrete image moment

computation structure based on a systolic array,

leveraging its characteristics for implementation using

very large-scale integration (VLSI) technology.

In [10], the Hu Moment concept serves as a detection

algorithm implemented on an FPGA system through

hardware description language. This algorithm

effectively recognizes target shapes within test images.

The implementation involves utilizing two finite state

machines to compute Hu Moments and the NLM filter.

The findings demonstrate that the hardware

implementation significantly outperforms software in

the computation of image moments, showcasing the

efficiency of FPGA-based processing for such tasks.

In [11], the hardware implementation of a Shape

Recognition Algorithm based on Invariant Moments is

outlined, aiming for optimized execution speed and

resource utilization. Manual optimization, combined

with pragma commands, results in the most efficient

version in the third implementation, fully utilizing

available resources. The study underscores the

importance of specific optimizations for improved

performance, as High-Level Synthesis (HLS) and

programmable logic alone do not guarantee efficiency.

Results indicate significant time efficiency gains using

HLS tools and certain optimization methods compared

to software implementation, with manual optimization

being particularly effective. However, a trade-off

between performance and chip utilization in FPGA

technology persists, as demonstrated by compromises

between processing speed and the ability to handle

multiple matrices simultaneously across different

implementations.

In this article, we introduce two novel structures

designed for real-time computation of two-dimensional

moments up to the 14th order (q=0,1,2,...,7,

p=0,1,2,...,7) for grayscale images. These structures

utilize a systolic parallel array employing pipelining

techniques and a compressor. Computation is

performed in floating-point format and implemented

using 45nm CMOS technology.

2. Image Moments
Image moments are mathematical descriptors used in

image processing and computer vision to characterize

various properties of an image, such as its shape, size,

orientation, and intensity distribution. These moments

provide valuable information for tasks such as object

recognition, tracking, and analysis. The formula for

computing image moments depends on the specific

moment being calculated. However, the general

formula for computing moments of an image function

is given by Eq. 1:

𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)𝑛

𝑦=1 𝑥 ≤ 𝑚, 𝑦 ≤ 𝑛 𝑚
𝑥=1 (1)

where Mpq represents the (p,q)-th moment, and the

integration is performed over the entire region R. This

equation captures the essence of moment computation,

wherein pixel intensities f(x,y) are multiplied by the

spatial coordinates xp and yq, and then integrated over

the region of interest.

Image moments find widespread utility across diverse

domains, serving as essential mathematical descriptors

used in image processing and computer vision [12].

They characterize various properties of an image,

including its shape, size, orientation, and intensity

distribution. These moments play a crucial role in

numerous applications, such as object recognition,

shape analysis, image registration, segmentation, and

texture analysis. They facilitate tasks like object

recognition and classification by extracting

discriminative features capturing an object's centroid,

orientation, and size. Additionally, moments aid in

shape analysis, enabling comparisons between shapes

and facilitating tasks like template matching and shape

similarity measurement. In image registration,

First Author Full Name, Second Author Full Name / IJCOE year, Vol(No); p.p1-p2

3

moments are instrumental in aligning and matching

images from different sources, while in segmentation,

they contribute to partitioning images into meaningful

regions based on their moment properties [13].

Furthermore, image moments play a crucial role in

texture analysis, capturing statistical properties of

image textures for tasks such as texture classification

and discrimination [14]. Overall, image moments serve

as foundational elements in image analysis and

computer vision, empowering a broad spectrum of

applications across various fields.

Low-order moments are utilized for extracting features

and determining the center of gravity, position, and

orientation of an object within an image [15]. On the

other hand, higher-order moments capture additional

intricate features of the image and are commonly

employed in pattern recognition and image

reproduction tasks. However, directly computing the

moments according to Eq. 1 necessitates m×n×(p+q+2)

addition operations, where m and n denote the

dimensions of the image. This poses significant

challenges when dealing with a large number of

calculation operations, including m×n multiplication

operations, particularly in scenarios requiring real-time

moment computation.

In [16], orthogonal moments are computed using

recurrence relations for Legendre and discrete

Chebyshev polynomials, aiming to achieve both speed

and accuracy in computation. The study emphasizes

minimizing errors in moments approximation to

maintain their discriminative capability in

classification tasks. Numerical experiments across six

texture image databases reveal that moments computed

via recursion formulas outperform those derived from

closed-form representations. Additionally, moments

extracted from the Gray-Level Co-occurrence Matrix

(GLCM) demonstrate high classification accuracy,

especially with a higher number of moments. The study

also highlights the potential of weighted moments to

enhance classification results. [17] presents a parallel

algorithm effectively implemented to compute 2D and

3D Legendre moments for gray-level images and

objects. This algorithm is assessed on multicore CPUs

and GPUs, with experimental results closely aligning

with theoretical-to-optimal speedup ratios for

multicore CPUs and demonstrating significant

acceleration for GPUs. Furthermore, [10] presents a

hardware-based shape detection algorithm utilizing

Hu's moments and a non-local means filter on an FPGA

system. The paper outlines the algorithm's design

stages, emphasizing speed and parallelism in signal

processing, and showcases its effectiveness in

recognizing target shapes within test images.

3. Systolic Array
The Systolic Array serves as a versatile solution for

translating high-level computations into hardware

structures. Its fundamental design involves processing

data from memory in a sequential manner, with each

cell performing computations before passing the data

to the next cell in the array. Noteworthy advantages of

the systolic system include its modularity, regular and

streamlined data flow, rapid response time, and the

ability to utilize uniform and simplistic cells [4].

According to Eq (1), the calculation of image moments

involves repeated multiplication operations for each

pixel of the image, followed by the summation of these

calculated expressions. In real-time processing, it's

essential to initiate the computation for each pixel as it

emerges from the camera and continue until the arrival

of the next pixel. Once the entire image has been

captured, the processing concludes. If the camera

output is in Raster Scan format, the expression

xp yq f (x , y) needs to be computed for individual pixels

in the first row of the image. Subsequently, as each

subsequent row is captured, the operation is repeated

for that row. Given this process, employing a systolic

array is well-suited for implementing the moment

calculation algorithm, with numerous existing

structures relying on this architecture [18],[19].

In this study, we utilize the systolic structure depicted

in Figure 1. This structure comprises n+1 pipeline

stages. The symbol "+" denotes the unit of calculation

for the adder unit, while "P" signifies the unit for

exponentiation and multiplication. The final adder

combines the output of the preceding adder with the

previously stored value. Each combination of "+" and

"P" forms a moment processor element (MPE). Figure

2 illustrates the structure of MPE cell. The control unit

receives data f(x, y) from the camera and transmits f(x,

y) along with y and x values relevant to each cell. For

brevity, the schematic of the control unit is omitted. In

this configuration, all units operate simultaneously on

the rising edge of the clock pulse. The xp computing

unit, also known as an exponentiation unit (EXP), is

responsible for raising a given input value x to the

power of P. This unit is essential in various

computational tasks where exponentiation operations

are required, such as in polynomial evaluations, signal

processing, and numerical simulations. The unit

typically consists of arithmetic and logic circuits

designed to efficiently compute exponentiation

operations with high accuracy and low latency.

Figure 1. The systolic array structure for implementing the

image moment calculation algorithm utilizes four processors.

4

Figure 2. Moment processor element (MPE).

When multiple MPEs are connected sequentially, they

form a systolic array of cells, each responsible for

processing specific portions of the image data. In

Figure 3, we observe a structural arrangement

composed of four cells. In this setup, MPE1 initially

processes pixels associated with the kth column of the

image. Following this, MPE2, MPE3, and MPE4

consecutively handle calculations for the subsequent

columns. Upon completing computations for these four

columns, the result from MPE4 is fed back to MPE1,

initiating a continuous processing cycle. Subsequently,

pixels from the next set of four columns are directed to

MPE1 through MPE4, thus repeating this sequence

iteratively for all columns in the image. This feedback

loop ensures seamless and efficient processing of the

entire image dataset through the systolic array

structure.

Figure 3. Structure of a Systolic Array Consisting of Four

Cells for Image Moment Computation.

3.1 Computatonal units

Choosing the number format is crucial in designing the

moment calculation structure, as it dictates the bit

width of computing units and transmission lines. A

164-bit number is necessary to represent the maximum

value of the 14th-order moment in binary format.

However, employing binary numbers for moment

calculation up to the 14th order would require 164-bit

arithmetic units, increasing complexity, power

consumption, and gate count. To mitigate this, floating-

point number formats are utilized. In this research, the

maximum moment order calculated is 5.8688×1048.

Using 8 bits for the exponent and 10 bits for the

mantissa ensures sufficient range and precision. The

decimal equivalent of the maximum number

represented by this number of bits is equal to 1.16×1077,

which exceeds the maximum value of M77.

Since the calculation of moments involves only

positive numbers, the sign bit is omitted. Furthermore,

to enhance accuracy, the normalized mode of floating-

point numbers is utilized. The maximum relative

rounding error in calculating moments up to the 14th

order using this format is 3.27%, which is acceptable

for practical applications.

3.1.1 Adder

In this design, a Carry Select Adder (CSA) is

constructed using a combination of multiplexers

(muxes) and full adders (FAs). The CSA architecture

facilitates efficient addition of two multi-bit binary

numbers by distributing the carry bits across multiple

stages, reducing the critical path delay and enhancing

performance [20]. The design commences with the

computation of the least significant bit (LSB) sum

(Sum[0]) and carry-out (C-out) using a single full

adder. Subsequently, the next bit of the sum (Sum[1])

is computed alongside the carry-in (C-in) from the

previous stage, once again employing a single full

adder. To compute the next two bits of the sum

(Sum[3:2]), a pair of serial full adders are utilized in

conjunction with a 4:2 multiplexer, allowing for

efficient carry propagation and selection. Similarly, the

subsequent three bits of the sum (Sum[6:4]) are

computed using a combination of 6:3 multiplexers and

three serial full adders.

This architecture enables parallel computation of

multiple bits of the sum while efficiently managing

carry propagation. By distributing the addition process

across multiple stages and utilizing serial adders where

necessary, the design achieves reduced critical path

delay and optimal performance. Additionally, to

efficiently add two 18-bit floating-point numbers, the

process involves comparing the numbers and adjusting

the smaller number's mantissa based on the difference

in their exponents. This addition operation requires a

10-bit adder, such as the ten-bit Carry Select Adder

(CSA) utilized in this study. Ensuring optimal

performance entails balancing the input paths to the

CSA to maintain uniform delay across all layers. The

design of a high-speed and low-power ten-bit CSA

adder, crucial for achieving fast and energy-efficient

computation, is illustrated in Figure 4. The CSA offers

several advantages, including high-speed addition, low

power consumption, compact hardware utilization,

scalability to larger bit widths, and minimized critical

path delay, making it a preferred choice for arithmetic

units in various computing systems.

First Author Full Name, Second Author Full Name / IJCOE year, Vol(No); p.p1-p2

5

Figure 4. Ten bit CSA.

3.1.2 Multiplier

In this study, the 10*10 Dadda multiplier is employed

as the multiplier unit, acknowledged for its superior

speed compared to similar types. Leveraging a

modified Booth encoding technique, the Dadda

multiplier facilitates efficient and rapid multiplication

operations by reducing the number of partial products,

thereby enhancing computational performance.

Operating in stages, each stage of the Dadda multiplier

comprises a specific number of rows of partial

products. The height of each stage is determined by

working backward from the final stage, typically

consisting of two rows of partial products. The design

incorporates a strategy to reduce the number of partial

products, utilizing two layers of full adders. Each full

adder input carries a Cin, representing the Cout of the

previous full adder. By utilizing several full adders, a

logical circuit is created to add multiple-bit numbers,

with each carry bit "rippling" to the next full adder.

This architecture necessitates employing the Ripple

Carry Adder (RCA) procedure. Data is transmitted to

adders, with the carry of each stage added to the next

two data inputs in the same stage. Ultimately, the ripple

carry adder process is executed at the final stage,

yielding product terms p1 to p8, as illustrated in Figure

5.

Figure 5. Dot diagram illustrating the 10×10 Dadda

multiplication process.

3.1.3 Exponentiation Unit

To compute the powers of xp and yq, p and q clock

cycles are required, respectively. However, as the order

of moments increases, the processing time becomes

extended. Figure 6 illustrates a more efficient structure

for this operation. The proposed design comprises three

pipeline stages, allowing the computation of the power

of a number within three clock cycles. Notably, this

time remains constant regardless of the value of p. This

scheme supports calculations up to x7. Based on the

power value, the multiplexer selects and outputs the

desired value.

The use of floating-point units for processing numbers

leads to higher power consumption compared to binary

number formats. Complex adder and multiplier units

are required for binary formats, such as the 164-bit

CSA which demands multiple layers of adders. In

contrast, the hardware complexity of comparators and

10-bit shifters is significantly lower. Designing Dadda

multipliers presents even greater complexity than CSA

architectures.

Figure 6. Pipeine exponentiation unit computing xp.

4. Simulation Results
The physical attributes of the moment computation

structure were analyzed by synthesizing them with the

Nangate 45nm open cell library using the Synopsys

Design Compiler. Power consumption was estimated

using the Synopsys power analysis tool, based on a

VCD file generated from post-synthesis simulations

with 100,000 random inputs. All comparisons were

conducted post-synthesis for all designs at the block

level, following the practices of ASIC designers who

thoroughly assess building blocks for potential

integration into future chips.

Table 1 compares different architectures, including the

proposed approach, based on speed, power

consumption, and area. The proposed approach

exhibits significantly higher speeds in gigabits per

6

second (618.243 Gbit/s) and frames per second

(954.012 frames/s) compared to existing architectures,

marking an improvement of approximately 571% and

1024%, respectively. Additionally, it demonstrates

substantially lower power consumption (3.254 mW),

showcasing a reduction of around 98.7% compared to

other methods. However, it occupies a slightly larger

area (0.734 mm²) than some of the other structures,

representing a minor increase.

Table 1. Comparative analysis of performance metrics for

various structures.

Architecture [21] [22] [16] Proposed

Max

Moment

Order

16 10

18 14

Transistor

count

43894 143253 639804 543251

Speed

(Gbit/s)

86.481 32.215 92.285 618.243

Speed

(frame/s)

45.277 25.568 84.237 954.012

Power (mw) 254.863 185.657 19.586 3.254

Area (mm2) 0.218 0.521 0.657 0.734

The combined utilization of systolic array,

parallelization process, pipeline, and the

implementation of fast multiplier and adder units in the

proposed method has significantly enhanced its

efficiency compared to other methods. By optimizing

the performance of each block within the structure,

such as employing the "Dada Multiplier", CSA adder,

and a specially designed power supply unit, the

operational speed of the entire system has been notably

increased. This enhancement underscores the

effectiveness of the proposed methodology in

achieving superior performance metrics across various

parameters.
Based on Figure 7, the proposed structure exhibits a

notable decrease in delay, ranging from approximately

47% to 84% compared to [21], [22], and [16],

indicating significantly improved efficiency across

various moment orders.

Figure 7. Comparison of delay for various moment orders in

different structures.

5. Conclusion

In this article, we introduced a novel structure utilizing

systolic arrays and pipelines for the computation of

high-order two-dimensional moments in grayscale

images. Our proposed structure demonstrates

remarkable efficiency, with each cell capable of

computing the 14th order moment of a 1024×1024

image at an impressive rate of 954 frames per second

(fps). Notably, our design achieves low power

consumption, registering at only 3.254 mW.

Leveraging these promising outcomes, future

enhancements could focus on augmenting

computational speeds by scaling up the number of

computing cells, thereby further optimizing

performance.

7. References
[1] Yuh, J. Design and control of autonomous underwater robots: A survey.

Autonomous Robots, 8, 7-24. (2000)

[2] Terracciano, D. S., Bazzarello, L., Caiti, A., Costanzi, R., & Manzari, V.

Marine robots for underwater surveillance. Current Robotics

Reports, 1, 159-167. (2020)

[3] Liu, J., Gao, J., An, X., & Yan, W. (2019). Autonomous Landing of an

Unmanned Underwater Vehicle using Hybrid Visual Servoing

Control with Image Moments and Quaternions. Paper presented

at the OCEANS 2019-Marseille.

[4] Eustice, R. M., Pizarro, O., & Singh, H. Visually augmented navigation

for autonomous underwater vehicles. IEEE Journal of oceanic

Engineering, 33(2), 103-122. (2008)

[5] Forouher, D., Hartmann, J., Klüssendorff, J. H., et al. (2012). HANSE—

A Low-Cost Autonomous Underwater Vehicle. Paper presented

at the Autonomous Mobile Systems 2012: 22. Fachgespräch

Stuttgart, 26. bis 28. September 2012.

[6] Humais, M. A. Tools for Detection Tracking and Autonomous

Operations by Unmanned Aerial Vehicles. (2020)

[7] Eren, F. (2015). Pose detection and control of unmanned underwater

vehicles (UUVs) utilizing an optical detector array. University

of New Hampshire.

[8] Karampasis, N. D., Spiliotis, I. M., & Boutalis, Y. S. Real-time

Computation of Krawtchouk Moments on Gray Images Using

Block Representation. SN Computer Science, 2, 1-15. (2021)

[9] Hua, X., Hong, H., Liu, J., & Shi, Y. A novel unified method for the fast

computation of discrete image moments on grayscale images.

Journal of Real-Time Image Processing, 17, 1239-1253. (2020)

[10] Raffaitin, C., Romero, J.-S., Romero, J.-S., & Procel, L.-M. (2019).

Hardware implementation of a shape recognition algorithm

based on invariant moments. Paper presented at the Proceedings

of the 32nd Symposium on Integrated Circuits and Systems

Design.

[11] Stančić, S. M., Popović-Božović, J. S., & Ponjavić, M. M. (2017). Hls

efficiency in the case of image moments algorithm

implementation. Paper presented at the 2017 25th

Telecommunication Forum (TELFOR).

[12] Hjouji, A., El-Mekkaoui, J., Jourhmane, M., & Bouikhalene, B. New

set of non-separable orthogonal invariant moments for image

recognition. Journal of Mathematical Imaging and Vision, 62,

606-624. (2020)

[13] Manjunath, K., Prabhu, G., & Siddalingaswamy, P. A quantitative

validation of segmented colon in virtual colonoscopy using

image moments. Biomedical Journal, 43(1), 74-82. (2020)

[14] Majumdar, I., Chatterji, B., & Kar, A. (2020). A moment based feature

extraction for texture image retrieval. Paper presented at the

Information, Photonics and Communication: Proceedings of

Second National Conference, IPC 2019.

[15] Shao, X., Liu, N., Wang, Z., Zhang, W., & Yang, W. Neuroadaptive

integral robust control of visual quadrotor for tracking a moving

object. Mechanical Systems and Signal Processing, 136,

106513. (2020)

[16] Di Ruberto, C., Putzu, L., & Rodriguez, G. Fast and accurate

computation of orthogonal moments for texture analysis. Pattern

Recognition, 83, 498-510. (2018)

[17] Salah, A., Hosny, K. M., & Abdeltif, A. M. (2023). A Generic

Multicore CPU Parallel Implementation for Fractional Order

Digital Image Moments Recent Advances in Computer Vision

Applications Using Parallel Processing (pp. 1-12): Springer.

First Author Full Name, Second Author Full Name / IJCOE year, Vol(No); p.p1-p2

7

[18] Wang, B., Ma, S., Zhu, G., Yi, X., & Xu, R. A novel systolic array

processor with dynamic dataflows. Integration, 85, 42-47.

(2022)

[19] Zhang, J., & Pan, C. (2020). New algorithm and its systolic

implementation for digital correlation by using first-order

moment. Paper presented at the MIPPR 2019: Parallel

Processing of Images and Optimization Techniques; and

Medical Imaging.

[20] Monajati, M. Underwater Image Enhancement Using FPGA-Based

Gaussian Filters with Approximation Techniques. International

Journal Of Coastal, Offshore And Environmental Engineering

(ijcoe), 8(4), 49-58. (2023)

[21] Roma, N., & Sousa, L. (2000). In the development and evaluation of

specialized processors for computing high-order 2-D image

moments in real-time. Paper presented at the Proceedings Fifth

IEEE International Workshop on Computer Architectures for

Machine Perception.

[22] Iwashita, A., Komuro, T., & Ishikawa, M. An image-moment sensor

with variable-length pipeline structure. IEICE transactions on

electronics, 90(10), 1876-1883. (2007)

