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Image moments are pivotal in the control of Unmanned Underwater Vehicles 

(UUVs), empowering them to extract valuable insights from onboard camera 

images, identify objects, navigate autonomously, and adapt to evolving 

environmental conditions. Integrating image moment analysis into UUV 

control systems amplifies their effectiveness in exploration, research, 

surveillance, and various underwater applications. However, the computational 

demands of moment calculation algorithms pose challenges for real-time 

implementation, particularly with higher moment orders. In this study, we 

propose a novel structure based on systolic arrays, leveraging pipeline 

technique, to compute moments up to the 14th order of grayscale images in real 

time. Implemented in 45nm CMOS technology, our design demonstrates 

impressive performance, with each cell capable of computing the 14th order 

moment of a 1024×1024 image at a remarkable rate of 954 fps. Moreover, our 

design boasts low power consumption, registering at only 3.254 mW, 

demonstrating its potential for enhancing UUV control systems for diverse 

underwater applications. 
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1. Introduction 
Unmanned Underwater Vehicles (UUVs) are 

autonomous robotic vessels designed for underwater 

operations without direct human control [1]. Equipped 

with sensors and propulsion systems, they navigate 

underwater environments, collect data, and perform 

tasks across various fields including oceanographic 

research, underwater mapping, marine biology, 

defense, infrastructure inspection, and search and 

rescue operations. UUVs offer a versatile platform for 

exploration, research, security, and industrial 

applications, contributing to our understanding and 

utilization of the world's oceans [2]. 

Image moments are indispensable tools in the realm of 

UUVs, playing a pivotal role in various aspects of their 

operation [3]. These moments are integral to extracting 

meaningful information from onboard camera images, 

enabling UUVs to recognize objects, navigate 

autonomously, and adapt to changing environmental 

conditions. The incorporation of image moment 

analysis into UUV control systems significantly 

enhances their capabilities for exploration, research, 

surveillance, and various underwater applications [3]. 

In feature extraction, image moments serve as essential 

mathematical descriptors derived from pixel 

intensities, providing valuable insights into an image's 

shape, size, orientation, and object distribution [4]. 

This feature extraction process is particularly crucial 

for UUV navigation, where visibility is often limited, 

making it imperative to extract pertinent features from 

onboard camera imagery for effective navigation and 

obstacle avoidance. 

Furthermore, image moments facilitate object 

recognition and tracking, empowering UUVs to 

identify and monitor objects of interest in their 

surroundings [5]. This capability is essential for tasks 

such as detecting underwater structures, monitoring 

marine life, and identifying potential hazards. By 

accurately recognizing and tracking objects, UUVs can 

autonomously navigate through complex underwater 

environments while adeptly avoiding obstacles. 

Additionally, image moments contribute significantly 

to localization and mapping efforts. Through the 

analysis of moments extracted from successive images, 

UUVs can estimate their position and orientation 

relative to known landmarks or predefined maps. This 

information is crucial for ensuring precise navigation 

and achieving mission objectives, especially in 

environments where GPS signals may be unreliable or 

inaccessible [6]. 

Real-time implementation of image moments is crucial 

for UUVs because it enables swift decision-making, 

autonomous navigation, and obstacle avoidance in 

underwater environments [6]. By analyzing visual data 
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in real-time, UUVs can recognize objects, track their 

movements, and adjust their course accordingly, 

ensuring efficient and safe operation. Additionally, 

real-time processing enhances mission efficiency by 

enabling prompt responses to changing conditions and 

optimizing task execution. This capability not only 

enhances the autonomy and reliability of UUVs but 

also contributes to their overall safety and effectiveness 

in diverse underwater applications [7]. 

An approach for swiftly computing Krawtchouk 

moments in grayscale images, alongside rapid 

calculation techniques for binary images is presented in 

[8]. By decomposing 8-bit/pixel grayscale input images 

into corresponding bitplanes represented by image 

blocks, lower-order bitplanes exhibit a resemblance to 

a half-intensity image. Consequently, only the 

moments of higher-order bitplanes are computed, with 

the least significant bitplanes replaced by half-intensity 

images to significantly accelerate moment computation 

while maintaining an acceptable error margin between 

original and reconstructed images. Experimental 

findings confirm the effectiveness of substituting the 

lower 5 bitplanes with half-intensity images, resulting 

in minimal error in reconstructed images and notable 

acceleration in moment computation. Additionally, it 

demonstrates rapid performance, achieving real-time 

operation under typical conditions in pattern 

recognition scenarios requiring a moderate number of 

moment calculations in small-sized images. 

In [9], researchers introduce an algorithm for 

computing discrete image moments based on first-

order moments, achieved through a simple 

mathematical deduction, enabling the utilization of a 

fast algorithm for their calculation. Unlike 

conventional methods relying on moment kernel 

polynomials' properties, this approach allows for the 

computation of any discrete image moments, offering 

advantages such as a straightforward computation 

structure, no need for multiplication operations, 

independence from image intensity distribution, and 

applicability to all discrete image moment families. 

Additionally, they present a discrete image moment 

computation structure based on a systolic array, 

leveraging its characteristics for implementation using 

very large-scale integration (VLSI) technology. 

In [10], the Hu Moment concept serves as a detection 

algorithm implemented on an FPGA system through 

hardware description language. This algorithm 

effectively recognizes target shapes within test images. 

The implementation involves utilizing two finite state 

machines to compute Hu Moments and the NLM filter. 

The findings demonstrate that the hardware 

implementation significantly outperforms software in 

the computation of image moments, showcasing the 

efficiency of FPGA-based processing for such tasks. 

In [11], the hardware implementation of a Shape 

Recognition Algorithm based on Invariant Moments is 

outlined, aiming for optimized execution speed and 

resource utilization. Manual optimization, combined 

with pragma commands, results in the most efficient 

version in the third implementation, fully utilizing 

available resources. The study underscores the 

importance of specific optimizations for improved 

performance, as High-Level Synthesis (HLS) and 

programmable logic alone do not guarantee efficiency. 

Results indicate significant time efficiency gains using 

HLS tools and certain optimization methods compared 

to software implementation, with manual optimization 

being particularly effective. However, a trade-off 

between performance and chip utilization in FPGA 

technology persists, as demonstrated by compromises 

between processing speed and the ability to handle 

multiple matrices simultaneously across different 

implementations. 

In this article, we introduce two novel structures 

designed for real-time computation of two-dimensional 

moments up to the 14th order (q=0,1,2,...,7, 

p=0,1,2,...,7) for grayscale images. These structures 

utilize a systolic parallel array employing pipelining 

techniques and a compressor. Computation is 

performed in floating-point format and implemented 

using 45nm CMOS technology. 

 

2. Image Moments 
Image moments are mathematical descriptors used in 

image processing and computer vision to characterize 

various properties of an image, such as its shape, size, 

orientation, and intensity distribution. These moments 

provide valuable information for tasks such as object 

recognition, tracking, and analysis. The formula for 

computing image moments depends on the specific 

moment being calculated. However, the general 

formula for computing moments of an image function 

is given by Eq. 1: 

 
𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)𝑛

𝑦=1          𝑥 ≤ 𝑚, 𝑦 ≤ 𝑛 𝑚
𝑥=1         (1) 

 

where Mpq represents the (p,q)-th moment, and the 

integration is performed over the entire region R. This 

equation captures the essence of moment computation, 

wherein pixel intensities f(x,y) are multiplied by the 

spatial coordinates xp and yq, and then integrated over 

the region of interest. 

Image moments find widespread utility across diverse 

domains, serving as essential mathematical descriptors 

used in image processing and computer vision [12]. 

They characterize various properties of an image, 

including its shape, size, orientation, and intensity 

distribution. These moments play a crucial role in 

numerous applications, such as object recognition, 

shape analysis, image registration, segmentation, and 

texture analysis. They facilitate tasks like object 

recognition and classification by extracting 

discriminative features capturing an object's centroid, 

orientation, and size. Additionally, moments aid in 

shape analysis, enabling comparisons between shapes 

and facilitating tasks like template matching and shape 

similarity measurement. In image registration, 
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moments are instrumental in aligning and matching 

images from different sources, while in segmentation, 

they contribute to partitioning images into meaningful 

regions based on their moment properties [13]. 

Furthermore, image moments play a crucial role in 

texture analysis, capturing statistical properties of 

image textures for tasks such as texture classification 

and discrimination [14]. Overall, image moments serve 

as foundational elements in image analysis and 

computer vision, empowering a broad spectrum of 

applications across various fields. 

Low-order moments are utilized for extracting features 

and determining the center of gravity, position, and 

orientation of an object within an image [15]. On the 

other hand, higher-order moments capture additional 

intricate features of the image and are commonly 

employed in pattern recognition and image 

reproduction tasks. However, directly computing the 

moments according to Eq. 1 necessitates m×n×(p+q+2) 

addition operations, where m and n denote the 

dimensions of the image. This poses significant 

challenges when dealing with a large number of 

calculation operations, including m×n multiplication 

operations, particularly in scenarios requiring real-time 

moment computation. 

In [16], orthogonal moments are computed using 

recurrence relations for Legendre and discrete 

Chebyshev polynomials, aiming to achieve both speed 

and accuracy in computation. The study emphasizes 

minimizing errors in moments approximation to 

maintain their discriminative capability in 

classification tasks. Numerical experiments across six 

texture image databases reveal that moments computed 

via recursion formulas outperform those derived from 

closed-form representations. Additionally, moments 

extracted from the Gray-Level Co-occurrence Matrix 

(GLCM) demonstrate high classification accuracy, 

especially with a higher number of moments. The study 

also highlights the potential of weighted moments to 

enhance classification results. [17] presents a parallel 

algorithm effectively implemented to compute 2D and 

3D Legendre moments for gray-level images and 

objects. This algorithm is assessed on multicore CPUs 

and GPUs, with experimental results closely aligning 

with theoretical-to-optimal speedup ratios for 

multicore CPUs and demonstrating significant 

acceleration for GPUs. Furthermore, [10] presents a 

hardware-based shape detection algorithm utilizing 

Hu's moments and a non-local means filter on an FPGA 

system. The paper outlines the algorithm's design 

stages, emphasizing speed and parallelism in signal 

processing, and showcases its effectiveness in 

recognizing target shapes within test images. 
 

3. Systolic Array 
The Systolic Array serves as a versatile solution for 

translating high-level computations into hardware 

structures. Its fundamental design involves processing 

data from memory in a sequential manner, with each 

cell performing computations before passing the data 

to the next cell in the array. Noteworthy advantages of 

the systolic system include its modularity, regular and 

streamlined data flow, rapid response time, and the 

ability to utilize uniform and simplistic cells [4]. 

According to Eq (1), the calculation of image moments 

involves repeated multiplication operations for each 

pixel of the image, followed by the summation of these 

calculated expressions. In real-time processing, it's 

essential to initiate the computation for each pixel as it 

emerges from the camera and continue until the arrival 

of the next pixel. Once the entire image has been 

captured, the processing concludes. If the camera 

output is in Raster Scan format, the expression 

xp yq f (x , y) needs to be computed for individual pixels 

in the first row of the image. Subsequently, as each 

subsequent row is captured, the operation is repeated 

for that row. Given this process, employing a systolic 

array is well-suited for implementing the moment 

calculation algorithm, with numerous existing 

structures relying on this architecture [18],[19]. 

In this study, we utilize the systolic structure depicted 

in Figure 1. This structure comprises n+1 pipeline 

stages. The symbol "+" denotes the unit of calculation 

for the adder unit, while "P" signifies the unit for 

exponentiation and multiplication. The final adder 

combines the output of the preceding adder with the 

previously stored value. Each combination of "+" and 

"P" forms a moment processor element (MPE). Figure 

2 illustrates the structure of MPE cell. The control unit 

receives data f(x, y) from the camera and transmits f(x, 

y) along with y and x values relevant to each cell. For 

brevity, the schematic of the control unit is omitted. In 

this configuration, all units operate simultaneously on 

the rising edge of the clock pulse. The xp computing 

unit, also known as an exponentiation unit (EXP), is 

responsible for raising a given input value x to the 

power of P. This unit is essential in various 

computational tasks where exponentiation operations 

are required, such as in polynomial evaluations, signal 

processing, and numerical simulations. The unit 

typically consists of arithmetic and logic circuits 

designed to efficiently compute exponentiation 

operations with high accuracy and low latency. 

 

 

Figure 1. The systolic array structure for implementing the 

image moment calculation algorithm utilizes four processors. 
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Figure 2. Moment processor element (MPE). 

When multiple MPEs are connected sequentially, they 

form a systolic array of cells, each responsible for 

processing specific portions of the image data. In 

Figure 3, we observe a structural arrangement 

composed of four cells. In this setup, MPE1 initially 

processes pixels associated with the kth column of the 

image. Following this, MPE2, MPE3, and MPE4 

consecutively handle calculations for the subsequent 

columns. Upon completing computations for these four 

columns, the result from MPE4 is fed back to MPE1, 

initiating a continuous processing cycle. Subsequently, 

pixels from the next set of four columns are directed to 

MPE1 through MPE4, thus repeating this sequence 

iteratively for all columns in the image. This feedback 

loop ensures seamless and efficient processing of the 

entire image dataset through the systolic array 

structure. 

 

 

Figure 3. Structure of a Systolic Array Consisting of Four 

Cells for Image Moment Computation. 

3.1 Computatonal units 

Choosing the number format is crucial in designing the 

moment calculation structure, as it dictates the bit 

width of computing units and transmission lines. A 

164-bit number is necessary to represent the maximum 

value of the 14th-order moment in binary format. 

However, employing binary numbers for moment 

calculation up to the 14th order would require 164-bit 

arithmetic units, increasing complexity, power 

consumption, and gate count. To mitigate this, floating-

point number formats are utilized. In this research, the 

maximum moment order calculated is 5.8688×1048. 

Using 8 bits for the exponent and 10 bits for the 

mantissa ensures sufficient range and precision. The 

decimal equivalent of the maximum number 

represented by this number of bits is equal to 1.16×1077, 

which exceeds the maximum value of M77. 

Since the calculation of moments involves only 

positive numbers, the sign bit is omitted. Furthermore, 

to enhance accuracy, the normalized mode of floating-

point numbers is utilized. The maximum relative 

rounding error in calculating moments up to the 14th 

order using this format is 3.27%, which is acceptable 

for practical applications. 

 

3.1.1 Adder 

In this design, a Carry Select Adder (CSA) is 

constructed using a combination of multiplexers 

(muxes) and full adders (FAs). The CSA architecture 

facilitates efficient addition of two multi-bit binary 

numbers by distributing the carry bits across multiple 

stages, reducing the critical path delay and enhancing 

performance [20]. The design commences with the 

computation of the least significant bit (LSB) sum 

(Sum[0]) and carry-out (C-out) using a single full 

adder. Subsequently, the next bit of the sum (Sum[1]) 

is computed alongside the carry-in (C-in) from the 

previous stage, once again employing a single full 

adder. To compute the next two bits of the sum 

(Sum[3:2]), a pair of serial full adders are utilized in 

conjunction with a 4:2 multiplexer, allowing for 

efficient carry propagation and selection. Similarly, the 

subsequent three bits of the sum (Sum[6:4]) are 

computed using a combination of 6:3 multiplexers and 

three serial full adders. 

This architecture enables parallel computation of 

multiple bits of the sum while efficiently managing 

carry propagation. By distributing the addition process 

across multiple stages and utilizing serial adders where 

necessary, the design achieves reduced critical path 

delay and optimal performance. Additionally, to 

efficiently add two 18-bit floating-point numbers, the 

process involves comparing the numbers and adjusting 

the smaller number's mantissa based on the difference 

in their exponents. This addition operation requires a 

10-bit adder, such as the ten-bit Carry Select Adder 

(CSA) utilized in this study. Ensuring optimal 

performance entails balancing the input paths to the 

CSA to maintain uniform delay across all layers. The 

design of a high-speed and low-power ten-bit CSA 

adder, crucial for achieving fast and energy-efficient 

computation, is illustrated in Figure 4. The CSA offers 

several advantages, including high-speed addition, low 

power consumption, compact hardware utilization, 

scalability to larger bit widths, and minimized critical 

path delay, making it a preferred choice for arithmetic 

units in various computing systems. 
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Figure 4. Ten bit CSA. 

3.1.2 Multiplier 

In this study, the 10*10 Dadda multiplier is employed 

as the multiplier unit, acknowledged for its superior 

speed compared to similar types. Leveraging a 

modified Booth encoding technique, the Dadda 

multiplier facilitates efficient and rapid multiplication 

operations by reducing the number of partial products, 

thereby enhancing computational performance. 

Operating in stages, each stage of the Dadda multiplier 

comprises a specific number of rows of partial 

products. The height of each stage is determined by 

working backward from the final stage, typically 

consisting of two rows of partial products. The design 

incorporates a strategy to reduce the number of partial 

products, utilizing two layers of full adders. Each full 

adder input carries a Cin, representing the Cout of the 

previous full adder. By utilizing several full adders, a 

logical circuit is created to add multiple-bit numbers, 

with each carry bit "rippling" to the next full adder. 

This architecture necessitates employing the Ripple 

Carry Adder (RCA) procedure. Data is transmitted to 

adders, with the carry of each stage added to the next 

two data inputs in the same stage. Ultimately, the ripple 

carry adder process is executed at the final stage, 

yielding product terms p1 to p8, as illustrated in Figure 

5. 

 

 

Figure 5. Dot diagram illustrating the 10×10 Dadda 

multiplication process. 

3.1.3 Exponentiation Unit 

To compute the powers of xp and yq, p and q clock 

cycles are required, respectively. However, as the order 

of moments increases, the processing time becomes 

extended. Figure 6 illustrates a more efficient structure 

for this operation. The proposed design comprises three 

pipeline stages, allowing the computation of the power 

of a number within three clock cycles. Notably, this 

time remains constant regardless of the value of p. This 

scheme supports calculations up to x7. Based on the 

power value, the multiplexer selects and outputs the 

desired value. 

The use of floating-point units for processing numbers 

leads to higher power consumption compared to binary 

number formats. Complex adder and multiplier units 

are required for binary formats, such as the 164-bit 

CSA which demands multiple layers of adders. In 

contrast, the hardware complexity of comparators and 

10-bit shifters is significantly lower. Designing Dadda 

multipliers presents even greater complexity than CSA 

architectures. 

 

Figure 6. Pipeine exponentiation unit computing xp. 

 

4. Simulation Results 
The physical attributes of the moment computation 

structure were analyzed by synthesizing them with the 

Nangate 45nm open cell library using the Synopsys 

Design Compiler. Power consumption was estimated 

using the Synopsys power analysis tool, based on a 

VCD file generated from post-synthesis simulations 

with 100,000 random inputs. All comparisons were 

conducted post-synthesis for all designs at the block 

level, following the practices of ASIC designers who 

thoroughly assess building blocks for potential 

integration into future chips. 

Table 1 compares different architectures, including the 

proposed approach, based on speed, power 

consumption, and area. The proposed approach 

exhibits significantly higher speeds in gigabits per 
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second (618.243 Gbit/s) and frames per second 

(954.012 frames/s) compared to existing architectures, 

marking an improvement of approximately 571% and 

1024%, respectively. Additionally, it demonstrates 

substantially lower power consumption (3.254 mW), 

showcasing a reduction of around 98.7% compared to 

other methods. However, it occupies a slightly larger 

area (0.734 mm²) than some of the other structures, 

representing a minor increase. 

 

Table 1. Comparative analysis of performance metrics for 

various structures. 

Architecture [21] [22] [16] Proposed 

Max 

Moment 

Order 

16 10 

 

18 14 

Transistor 

count  

43894 143253 639804 543251 

Speed 

(Gbit/s) 

86.481 32.215 92.285 618.243 

Speed 

(frame/s) 

45.277 25.568 84.237 954.012 

Power (mw) 254.863 185.657 19.586 3.254 

Area (mm2) 0.218 0.521 0.657 0.734 

 
The combined utilization of systolic array, 

parallelization process, pipeline, and the 

implementation of fast multiplier and adder units in the 

proposed method has significantly enhanced its 

efficiency compared to other methods. By optimizing 

the performance of each block within the structure, 

such as employing the "Dada Multiplier", CSA adder, 

and a specially designed power supply unit, the 

operational speed of the entire system has been notably 

increased. This enhancement underscores the 

effectiveness of the proposed methodology in 

achieving superior performance metrics across various 

parameters. 
Based on Figure 7, the proposed structure exhibits a 

notable decrease in delay, ranging from approximately 

47% to 84% compared to [21], [22], and [16], 

indicating significantly improved efficiency across 

various moment orders. 

 

 

Figure 7. Comparison of delay for various moment orders in 

different structures. 

5. Conclusion 

In this article, we introduced a novel structure utilizing 

systolic arrays and pipelines for the computation of 

high-order two-dimensional moments in grayscale 

images. Our proposed structure demonstrates 

remarkable efficiency, with each cell capable of 

computing the 14th order moment of a 1024×1024 

image at an impressive rate of 954 frames per second 

(fps). Notably, our design achieves low power 

consumption, registering at only 3.254 mW. 

Leveraging these promising outcomes, future 

enhancements could focus on augmenting 

computational speeds by scaling up the number of 

computing cells, thereby further optimizing 

performance. 
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