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Quay walls are sheltering structures used for protecting coastal regions against 

wave-induced forces. Because of the random nature of the wave behavior, the 

application of physical models for the study of wave-structure interaction can 

be quite efficient. The aim of this study was to investigate the behavior of quay 

walls under random waves through experimental methods. The study used walls 

with vertical geometrical form, which were exposed to sea random waves under 

the JONSWAP spectrum. Surface level and wall strain values were measured 

using built-in sensors. A neural network model was developed using the feed-

forward method with the backpropagation algorithm to analyze the time series 

of water surface level and strain. High coefficients of determination during the 

training and verification phases were observed, indicating good network 

performance. Self-correlation analysis of the time series showed that the data 

exhibited first-degree Markov characteristics. This finding was taken into 

consideration and increased the coefficients of determination in the neural 

network model. 

Keywords: 

Quay Wall  

Random Waves  

Strain  

ANN  

Peak Frequency 

Wave  Height 

1. Introduction
The wide coastlines in the country, the concentration of

population and industry in the coastal areas, and

damages from stormy waves necessitate examining the

resistant structures against waves as one of the essential

requirements [1]. Numerous studies have been

conducted on the protection of coasts against waves. In

a study, Alami et al. tested a combination of reinforced

coastal structures to reduce wave energy and observed

that with a decrease in wave height, coasts are

subjected to less damage [2]. Quay walls are one of the

most important structures, which significantly protect

the coasts. In addition to bearing the sea waves that are

imposed randomly, these walls should resist other

forces such as earthquakes, sea currents, wind, and the

impact of floats on the sea according to the

environmental conditions. One of the important tools

for measuring the interaction between these factors is

the application of physical models used broadly by

researchers and engineers in recent years [3]. The

foundation of these models can be traced back to the

15th century when Leonardo DaVinci proposed the

physical principles underlying them. Later in the 17th

century, Newton provided a comprehensive

explanation of these principles. To study such physical 

phenomena, it is essential to collect accurate data under 

controlled conditions. The collected data can then be 

processed and analyzed to gain insights into the 

problem. However, despite numerous studies on the 

reaction between quay walls and irregular waves, not 

many have explored the relationship between wave-

induced forces and the internal forces acting on the 

walls. In this research, the wall strain was measured by 

identifying strain on the wall during interaction with 

the random wave. The relationship between them was 

specified via the experimental model [4]. The modeling 

of the neural networks between the wave forces and the 

wall strain determines the relationship between these 

parameters, and the appropriate coefficient of 

determination expresses the efficiency of this model. 

Sainflou proposed a method for determining the 

pressure resulting from irregular waves for the first 

time. The advantage of his method was the feasibility 

of its application. By this method, the pressure 

distribution can be estimated approximately in a direct 

line [5]. Rundgren (1958) showed that the Sainflou 

method depicts the random waves force more than the 

actual amount [6]. The Minikin theory was proposed in 

1950 based on experimental observations on large 
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walls under regular broken waves. Indeed, the work of 

Mini Kane was the first experimental research that 

investigated the effect of Ashlee in his studies in a 

comprehensive way [7]. The most famous studies on 

the impact of the waves on the quay walls and vertical 

breakers were conducted by Goda in 2010 that are used 

by engineers for designing [8]. In experimental 

research, Vijayakrishna et al. (2004) investigated the 

dynamic wall response against regular waves in 

energy-absorbent structures [9]. Huge (2004) studied 

the flexural anchor in offshore structures against waves 

[10]. Nilamani et al. (2004) examined the impact of 

roughness on the quay walls as intrusion and extrusion 

chess blocks on the mentioned wall in an experimental 

approach and also studied the upstream and 

downstream waves and their effect on the implied 

forces by the waves. The wall was thin and deformable, 

and the back of the wall was considered vacant. The 

advantage of their work was using irregular waves and 

sloped walls with different slopes [11]. A method 

presented by Cumo et al. (2010) is suitable for scaling 

up impact pressures measured during small-scale 

physical model tests. The method accounts for air 

leakage's effect and applies to wave impact loads on 

different coastal structures. This methodology's 

applications to wave impacts on seawalls or caisson 

breakwaters have been studied [12]. 

Based on the conducted experimental and numerical 

studies, in the current research, the experimental study 

on assessing interaction of quay walls and random 

waves using ANN has been carried out using an 

artificial neural network. 
 

2. Methodology 
2.1. Random waves 

In general, the waves are divided into regular and 

random waves. Random waves can be defined as a 

combination of regular waves. The sea waves in the 

stormy state are random [13]. In this condition, zero up 

Crossing and Zero down Crossing methods and the 

hydrodynamic wave features are mapped. The Zero up 

crossing method is common and used in this research. 

Figure 1 shows the Zero up crossing method [14, 15]. 

 
Figure 1. Random wave (field and experiential waves) [15] 

 

2.2. Wave spectrum analysis  

The random waves can be investigated using spectrum 

analysis on the recorded waves, which in this regard, 

spectrum density can offer a comprehensive 

justification of the waves in the sea conditions. 

Accordingly, the different spectrums, such as 

Bretschnider in 1959, P-M in 1964, TMA in 1985, and 

JONSWAP in 1974, were defined from the registered 

data. Sorenson introduced the JONSWAP spectrum as 

one of the most applicable spectrums in coastal 

structure design [16, 17]. A recent study has undertaken 

new research to create a spectrum that accurately 

reflects Iran's climate. To achieve this objective, the 

researchers utilized the JONSWAP spectrum, as 

depicted by Equation (1) and illustrated in Figure 2. 

These findings represent a significant step towards 

understanding and modeling Iran's climate patterns 

[14]. 

𝑆(𝑓) =
𝛼𝑔2

(2𝜋)4𝑓5 𝑒−1.25(𝑓𝑝 𝑓⁄ )
4

𝛾𝑎                             (1) 

 

Where 𝛾 is usually considered 1.6 to 6; however, 3.3 

has been introduced as the best value in most 

references. The coefficient of 𝛾 is the density ratio in 

the maximum frequency spectrum JONSWAP to 

spectrum P-M [18]. Also, 𝛼 and 𝑓𝑝 Are defined in 

equations (2) to (4). 

 

𝑎 = 𝑒−[(𝑓−𝑓𝑝) (2𝜎2𝑓𝑝
2)⁄ ]                                      (2) 

𝛼 = 0.076 (
𝑔𝐹

𝑊2)
−0.22

                                         (3) 

 

𝑓𝑝 =
3.5𝑔

𝑊
(

𝑔𝐹

𝑊2)
−0.33

                                                  (4) 

 
In these equations, F, Fetch length, W is the wind 

velocity, f is the frequency, and fp is the peak 

frequency. 

  
Figure 2. JONSWAP wave spectrum [19] 

 

 

2.3. Physical model and experiments  

The specifications were prepared for the current 

research, and the wave flume was designed and built in 

the Tabriz University Marine Structures Laboratory. 

The specifications used for experiments are as follows 

(figure 4). 

- Length of flume: 12.5m 

- Width of flume: 1.15m 

-The length flume floor from the ground level is 75cm. 

-Inside flume height: 1.05 m 

- Water depth (d): 60 cm 
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-Wave generator type: hinged (Figure 3) 

-Wall type: impermeable, without wave overhead, 

clipped on the floor, free in the margins  

-Used waves: random under the JONSWAP spectrum  

-Water level sampling frequency: 10 Hz 

-Sampling frequency from the wall strain: 50 Hz  

 
(a) 

 
(b) 

 
Figure 3. Hinged wave maker: (a) Schematic figure, (b) 

The hinged wave maker used in this research 

 

 
Figure 4. Total view of the wave flume in the hydraulic 

laboratory 

 

2.4. Generation and wave mapping   

The JONSWAP spectrum input data is fed into the 

wave generator software via an input file, causing the 

paddle to initiate movement. However, as the 

numerical data may contain minor random fluctuations 

on the spectrum curve, generating these insignificant 

movements on the pedal is not feasible, and they must 

be eliminated. Consequently, a suitable filter is applied 

to the curve to remove any irregularities. The process 

of wave generation can be broken down into three 

simple steps, as illustrated in figures 5 and 6. 

 

 
Figure 5. Primary spectrum (measured, filtered, and theoretic)  

 

 

 
Figure 6. Modified spectrum (measured, filtered and 

theoretic)  

 

-Generation of the primary wave based on the DSA 

numerical model and obtaining the spectrum resulting 

from the data mapped from sensor 1(MOD0). 

-Modification of the obtained spectrum from step 1 

according to the theoretic spectrum (MOD1). 

-Repetition of step 2 in order to reduce the difference 

between the obtained spectrum and the theoretic 

spectrum (MOD2, 3). 
  

2.5. Strain gauge   

Strain gauges are TML Metal E-101R used for 

measuring flexural anchors as half-bridge. The 

sampling scope for the strain gauge varies from zero to 

100Hz. Since the wall oscillation is faster than the 

water surface oscillation, thus it is necessary to pay 

attention to it in selecting the wall response sampling 

frequency to prevent the undesired problem of aliasing. 

In this research, the strain sampling frequency is 50Hz 

[20]. The manner of connection of the half-bridge and 

the details of the strain gauge are shown in Figure 7.  
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Figure 7. a) wall, b) place of the strain gauge on the wall, c) 

strain gauge schematic view, d) half-bridge connection to the 

unilateral data logger, e,f) strain gauge connection to the 

bilateral data logger, g) real image of strain gauge by special 

sticker, h) data logger, i) data images mapped from the strain 

gauge [20] 

 

2.6. Experiments  
Table 1 summarizes the experiments. The changes of 

the effective height are Hs from 3.9 to 9.2 cm, and peak 

frequency fp ranges from 0.8 to 1.24 Hz. Table 1 

presents the results of the five water level sensors used 

to measure fifteen waves in this study. For example, 

wave number 8 had a height of 5.4 cm and a peak 

frequency of 1.2 Hz at the water surface level, as 

indicated in the table. In this table Hs is significant wave 

height. To ensure accurate water level measurements in 

each experiment, mapping was performed from the still 

water surface and saved in separate files as time series 

data. Concurrently, strain gauges were installed on the 

wall to determine the pure strain caused by each wave. 

Consequently, for wave number 8, Table 3 and the 

strain gauge results corresponding to Table 2 were 

proposed. As the strain gauge was only installed on the 

wall, a time series file was created for strain 

measurements.  

The wave absorber at the end of the channel is a metal 

mesh plate designed to absorb wave energy and prevent 

wave reflection. By absorbing the wave energy, it 

effectively eliminates the return wave and wave 

reflection. 

 

 

 

 

 

 

Table 1. specifications generated random waves by 

JONSWAP spectrum based on the wave effective height 

and peak frequency 

Number of Tests Hs (cm) Peak Frequency 
1 5 0.8 
2 5.2 1.24 
3 5 1 
4 5.6 1.23 
5 7.3 1.22 
6 3.9 1.23 
7 5.4 1 
8 5.4 1.2 
9 4.3 1.23 
10 7.7 1.21 
11 6 1.23 
12 7.5 1.23 
13 9.2 1.23 
14 5.6 1.24 
15 7.5 1.21 

 

Table 2.  mappings for determining the wave from the 

water surface level sensors 

Sensor 
Water Surface 

Level 

Water Static 

Surface Level 

WP1 sensor W1 W001 

WP2 sensor W2 W002 

WP3 sensor W3 W003 

WP4 sensor W4 W004 

WP5 sensor W5 W005 

 

Table 3. mappings for determining the strain from the 

strain gauge built on the wall 

Sensor Strain File Name 
The Strain File Name 

for Wall Still State 

SG1 E1 E

0

0

1 

 

2.7. Artificial neural networks modeling    

Artificial neural networks have become increasingly 

prevalent in various fields, including engineering. In 

hydraulic engineering, the backpropagation algorithm 

is commonly utilized. Recent research has 

demonstrated that using a three-layer backpropagation 

algorithm can yield promising outcomes for prediction 

and simulation purposes in this field [21]. In this 

section, the neural network modeling was done based 

on the time series mapped from the experiments.  Based 

on the research, the interaction between the wall and 

random waves is being studied. In this context, the 

water level time series are considered as input data, 

while the strain time series is considered as output data. 

The purpose is to analyze and understand the 

relationship between the wall and the waves, with a 

focus on measuring the strain and pressure exerted by 

the waves on the wall. Hence, changes in the water 

surface level can investigate the strain and pressure 

changes. 
 

2.8. Network structure 

Figure 7 depicts the feed-forward neural network with 

a backpropagation algorithm. This structure has been 

used in predicting the engineering works time series 

and is employed in this research. Based on this 

structure, nonlinear mapping is done between the input 

and output values. The feed-forward method is 

achieved based on the linear combination of the input 
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values leading to a nonlinear function. In Figure 8, i is 

related to the input layer, % is associated with the 

middle layer, j relates to neurons output, and k is the 

weight of the neurons in the feed-forward method, the 

connection among the neurons is done only by the 

middle layer. Equation (5) depicts the network output. 

 

�̂�𝑘 = 𝑓0[∑ 𝑤𝑘𝑗 . 𝑓(∑ 𝑤𝑗𝑖 . 𝑥𝑖
𝑁
𝑖=1 ) + 𝑤𝑗0

𝑀
𝑗=1 ]                         (5) 

 

Where 𝑤𝑗𝑖 is the middle layer between neuron i from 

the input layer and neuron j from the middle layer, 0jw  

is the bios of neuron j  , and hf  is the actuator 

function of the middle layer, 𝑤𝑘𝑗  is the output layer 

weight between neuron k  from the output layer and j 

from the middle layer, 0f  is the actuator function for 

the output neuron, 
i

x  is the input value in the input 

layer, ŷ  and y are the calculative and observation 

output values. The weights values differ in the middle 

and output layers and change in the network phase. The 

selective actuator functions are sigmoid logarithmic. 

The time series used in neural networks are normalized. 

Since these experimental data are related to some 

waves, they will be as positive and negative. Thus, this 

issue should be considered in their normalization. In 

the chapter on the analysis of the normalized form, the 

division of the time series was used as the maximum 

absolute value of the data in the time series. The data 

are used in this section based on this normalized 

method. On the other hand, applying this method is 

simple and common in engineering works [21]. 

 
Figure 8. feed-forward neural network structure with the 

backpropagation algorithm with three layers [21] 

 

2.9. Neural networks model   

Various techniques are available for training and 

validating neural networks. A widely adopted approach 

for validation involves selecting one-third of the input 

and output time series from the beginning and one-third 

from the end [21]. The training process involves 

creating a model, and based on the model, the 

validation is predicted. To assess the quality of the 

network, regression coefficients are calculated for both 

the training and validation phases. The coefficient of 

determination, as expressed in equation (6), indicates 

how well the model performs, with a value closer to 

one indicating better performance. The Root Mean 

Square Error coefficient, as expressed in equation (7), 

is another metric used to evaluate model performance, 

with values closer to zero indicating superior 

performance. 
 

𝑅2 = 1 −
∑ (𝐸𝑖 − �̂�𝑖)

2𝑁
𝑖=1

∑ (�̂�𝑖 − 𝐸)2𝑁
𝑖=1

                                                  (6) 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑖−�̂�𝑖)2𝑁

𝑖=1

𝑁
                                                        (7) 

 

R2, RMSE, N, Ei and 𝐸 are coefficient of determination 

Root Mean Square Error, number of observations, 

strains obtained in the experiment (prediction values), 

and the average of strains related to the strain time 

series [22].   
 

3. Results and discussion  
If the time series of the water surface level is shown 

with Wt and the strain time series is depicted by Et, the 

third-fourth Wt is considered as the training input from 

the beginning and one-fourth Wt, as verification input 

from the end, and one-fourth Et as verification output 

from the end. Table 4 summarizes the values of the 

coefficient of determination in the training section (𝑅𝑡
2) 

and verification (𝑅𝑣
2) based on the network architecture. 

The network architecture inserts the input, middle, and 

output neurons. For instance, the (2-1-3) is meant the 

number of input neurons 2, central neuron 1 and output 

neuron 3. As is seen from Table 4, after 200 repetitions 

with network architecture of (1-5-1), the coefficients of 

determination are constant. Thus, 𝑅𝑡
2=0.7699, 

𝑅𝑡
2=0.7743 are considered as coefficients. 

 
Table 4. Results of BP-FFNN model in prediction of the 

water surface level strain   

𝑹𝒕
𝟐 

(Training) 

𝑹𝒗
𝟐 

(Calibration) 
epoch 

ANN 

architecture 
0.7681 0.7683 50 1-2-1 

0.7688 0.7686 100 1-2-1 

0.7701 0.7686 150 1-2-1 

0.7710 0.7690 200 1-2-1 

0.7710 0.7690 250 1-2-1 

0.7710 0.7690 300 1-2-1 

0.7710 0.7690 400 1-2-1 

0.7710 0.7690 500 1-2-1 

0.7713 0.7692 200 1-3-1 

0.7731 0.7695 200 1-4-1 

0.7743 0.7699 200 1-5-1 

0.7743 0.7699 200 1-6-1 

0.7743 0.7699 200 1-7-1 

0.7743 0.7699 300 1-5-1 

  
Figure 9 shows the experimental and calculation results 

of water surface level strain prediction of the neural 

network model. Figure 9 depicts the regression curve 

for training, verification, and water surface level strain 

prediction. The obtained conversion coefficients for 
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training and verification depict better performance of 

the neural network models. 

Figure 9 shows the experimental and calculation results 

of water surface level strain prediction of the neural 

network model.  

 

 
Figure 9. experimental and calculation results of strain 

prediction 

 

Figure 10 depicts the regression curve for training, 

verification, and predicting water surface level strain. 

The obtained conversion coefficients for training and 

verification depict better performance of the neural 

network models. If there is a linear curve between time 

series 𝑦𝑡  and the same time series with a step 

backward 𝑦𝑡−1, the first-grade self-correlation is 

established, and if there is a linear curve between  𝑦𝑡,  

and  𝑦𝑡−2, the second-grade self-correlation is 

established, and this trend is continued if the inputs  𝑥𝑡,  

and output  𝑦𝑡,  are assumed, according to the Markov 

chain of rules, can be used for the prediction of the time 

series of first-grade Markov  𝑦𝑡, 𝑋𝑡 = [
𝑥𝑡

𝑦𝑡−1
] and for 

second grade Markov  𝑦𝑡, 𝑋𝑡 = [

𝑥𝑡

𝑦𝑡−1

𝑦𝑡−2

] that provide 

better results relative to 𝑋𝑡 = [𝑥𝑡]. Because the 

behavior is not completely linear, all cases are usually 

considered in prediction. In Figure 11, the curve 

between 𝐸𝑡 and 𝐸𝑡−1 has been drawn and 𝑅2 =

0.5998 was achieved, and Figure 12 shows 𝑅2 =
0.0122 between 𝐸𝑡 and𝐸𝑡−2. Thus, the date on the 

strain time series is first-grade Markov. 
 

 
Figure 10. regression curve for training, verification, and 

water surface level strain prediction  

 

 
Figure 11. linear regression between 𝑬𝒕 and 𝑬𝒕−𝟏  

 

 
Figure 12. linear regression between 𝑬𝒕 and 𝑬𝒕−𝟐 
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The results of the neural network model are shown 

according to Table 5, considering first and second-

grade Markov equations for strain and pressure. In 

these tables, it is seen that the value of R2 is increased 

by considering the first-grade Markov. On the other 

hand, in the case that [
𝑊𝑡

𝐸𝑡−1
] is considered in 

determining input strain instead of [Wt], the value of R2 

increases from 0.7773 to 0.8109. 

 
Table 5. Results obtained from BP-FFNN model in 

prediction of strain from water surface level 

2

t
R

(Training) 

2

v
R

(Calibration) 

epoch 
ANN 

architecture 
Output Input 

0.7743 0.7699 200 1-5-1 𝐸𝑡 [𝑊𝑡] 

0.8109 0.8418 250 2-8-1 𝑬𝒕 [
𝑾𝒕

𝑬𝒕−𝟏
] 

0.6395 0.6536 250 3-9-1 𝐸𝑡 [

𝑊𝑡

𝐸𝑡−1

𝐸𝑡−2

] 

 

4- Conclusion  
The present study aimed to investigate the behavior of 

quay walls under the influence of random waves, using 

experimental methods. Vertical geometrical form walls 

were exposed to sea waves with JONSWAP spectrum, 

and their surface level and wall strain values were 

measured using built-in sensors. The study utilized a 

neural network model, which employed the feed-

forward method with the backpropagation algorithm. 

The model used time series data of water surface levels 

and strains to predict their behavior. Finally, the 

following results can be mentioned: 

- The results of the study showed that the high 

conversion coefficients in the training and verification 

phases of the artificial neural networks modeling 

indicate better network performance.  

The BP-FFNN model was able to predict the water 

surface level strain, and the best ANN architecture was 

(1-5-1), with epoch 200 and coefficients of 

determination Calibration and Training of 0.7743 and 

0.7699, respectively, which are acceptable coefficients. 

- The data on the series showed first-grade self-

correlation (first-grade Markov) between water surface 

level and wall strain.  

- The best ANN architecture was (2-8-1), with epoch 

250 and coefficients of determination Calibration and 

Training of 0.8418 and 0.8109, respectively. Moreover, 

the first-grade Markov performed better than higher 

grades of Markov. 
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