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This study focused on improving the Princeton Ocean Model (POM) by 

proposing and implementing a new algorithm for its external mode, which 

solves depth-averaged two-dimensional equations of continuity and momentum 

transport. The goal of the new algorithm was to reduce the numerical diffusion 

of the model and enable the use of larger time steps for calculations. To achieve 

this, the Projection method was used along with the implicit discontinuity of the 

gravity terms in the governing equations of the two-dimensional solution of the 

model. The new algorithm was then evaluated for its efficiency in simulating 

tidal currents in the Persian Gulf. The results of the modified model were 

compared with those of the original model, as well as tidal fluctuations 

measured at several tidal stations in the Persian Gulf. The comparison showed 

that the modified algorithm successfully reduced the calculation time while 

increasing the accuracy and reducing numerical diffusion in the results. 
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1. Introduction 
The Princeton Ocean Model (POM) developed by 

Blumberg and Mellor [1], is a widely used numerical 

model for simulating ocean dynamics in various 

regions of the World Ocean such as Persian 

Gulf([2],[3]), Red Sea ([4],[5]), China Sea ([6],[7]), 

Mediterranean Sea ([8], [9]) and Gulf of Mexico 

([10],[11]). 

http://www.ccpo.odu.edu/POMWEB/POMRefs.htm 

and [12] gives more details of this model. 

The structure of POM is modular and flexible, with 

separate modules for the external and internal modes. 

The external mode of POM is designed to solve the 

depth-integrated equations while its internal mode 

solves three-dimensional vertical structure equations. 

In this article, we present a new implementation of the 

projection method in the external mode of POM, and 

assess its performance in simulating tidal currents in 

the Persian Gulf. Our implementation builds upon the 

existing capabilities of POM, and leverages its modular 

design and flexible grid system to enable efficient and 

accurate simulations. 

This paper is organized as follows. In section 2 method 

and materials used at this study including a brief 

description of POM, its governing equations and 

current and developed algorithms for solving the 

governing equations are presented. In section 3 an 

evaluation and comparison of the performance of the 

original and modified version of POM model in 

simulation of tidal current at the Persian Gulf are 

presented and finally the conclusion of the study is 

presented in section 4. 
 

2. Method and Materials 
2.1. Numerical Model 

The initial version of the POM model was presented in 

1978 by Blomberg and Mellor at Princeton University, 

USA. Since then, the development and application of 

this model has been supported by various research 

centers, including the NOAA Geophysical Fluid 

Dynamics Laboratory, Princeton University, etc. This 

model is an open-source model and is still being 

changed and updated by different researchers in 

calculations, capabilities and speed of execution. The 

POM model is an efficient numerical model for 

simulating and predicting marine phenomena, 

including mixing in shallow areas, the pattern of 

currents and water circulation in marginal seas and 

open oceans, etc. More than 70 countries in the world 

have used this model to simulate marine phenomena, 

and the results of their research have been published in 

reputable international sources. 

 
2.2. Governing equations  

https://journals.ametsoc.org/view/journals/atot/18/9/1520-0426_2001_018_1521_eotpom_2_0_co_2.xml#i1520-0426-18-9-1521-Blumberg1
http://www.ccpo.odu.edu/POMWEB/POMRefs.htm
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The equations that form the basis of a water circulation 

model express the current speed fields and the water 

surface elevation. Usually, two simplifying 

approximations of hydrostatic pressure assumption and 

Boussinesq approximation are used in these equations. 

In the first approximation, the weight of the fluid is 

considered equal to the water pressure, and in the 

second approximation, the difference in density is 

assumed to be negligible, except in the cases that are 

multiplied by the acceleration of gravity (g). These 

equations are written in a Cartesian coordinate system 

on the horizon and sigma in the vertical direction as 

follows: 
 

0
DU DV

x y





  
  

  
                                (1) 

 
2

2
0

0

M
x

UD U D UVD U
fVD

t x y

gD D
gD d

x x D x

K U
F

D







   


 

 

   
   

   

      
       

  
    

     (2) 

                              
2

2
0

0

M
y

VD UVD V D V
fUD

t x y

gD D
gD d

y y D y

K V
F

D







   


 

 

   
   

   

      
       

  
    

   (3) 

 

where x, y and z are Cartesian coordinates and the D 

which is representing the water depth, is calculated 

from the relationship D=H+η where H(x,y) is the bed 

topography and η(x,y,t ) is the level of the water 

surface. σ also represents the vertical coordinate, which 

changes between σ=0 at z=η to σ=-1 at z=-H (Figure 

1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U and V are the horizontal velocity components and ω 

is the vertical velocity component perpendicular to the 

sigma lines, which can be converted into the Cartesian 

velocity component from the following equation: 
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In equations 3 and 4, an average density value must be 

subtracted from the densities (ρ) to calculate the value 

(ρ'). This average value is usually the initial density 

field (ρ0) which is averaged on the z levels and then 

transferred to the sigma coordinates like the initial 

density field. This procedure reduces the sequence 

errors caused by calculating the pressure term gradient 

in sigma coordinates in steep topography [13]. In these 

equations, the changes of the Coriolis parameter are 

also considered with geographic latitude. 

The Fx and Fy terms, which represent the horizontal 

diffusion terms, are obtained from the following 

relations: 
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Figure 1. Specifications of the Sigma coordinate system in the vertical direction  

 

https://www.google.com/search?client=firefox-b-d&sxsrf=APwXEdf-legSQRlbQEZpN-CMulhwOX-7Tg:1682333566274&q=Boussinesq&spell=1&sa=X&ved=2ahUKEwiNwPH0rML-AhVniP0HHbbZDMkQkeECKAB6BAgIEAE
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and AM, the horizontal diffusion coefficient, is 

calculated in the POM model using Smagorinsky 

relations. The value of KM used in equations 3 and 4 

are vertical diffusion coefficients, and in this model, it 

is possible to calculate them from different turbulence 

models, such as the algebraic equations of the Prandtl 

mixing length or the k-l and k-Ꜫ equations. 

As can be seen, the governing equations of water 

circulation consist of differential equations that cannot 

be solved analytically for any range. Therefore, to solve 

them using numerical techniques, these differential 

equations in the desired range are converted into a 

series of algebraic equations and then solved using 

computational algorithms. In this case, the real space of 

the studied environment becomes a grid space, where 

the required unknowns are calculated on the mesh of 

that grid. 
 

2.3. Algorithm for solving governing equations of 

POM  

The equations governing the dynamics of water 

circulation, which were introduced in the previous 

section, include the fast movement of external gravity 

waves and the slow movement of internal gravity 

waves. Considering the time scale governing these two 

phenomena, in terms of computer calculations, it is 

desirable to separate these equations into depth-

integrated equations called external mode and three-

dimensional vertical structure equations called internal 

mode. This approach which is known as time-splitting 

and presented by ([14],[15]), forms the main structure 

of the algorithm for solving the three-dimensional 

equations governing the dynamics of water circulation 

in the POM model. This structure allows the free 

surface of water to be calculated separately from the 

three-dimensional calculations of velocity and 

thermodynamic properties. 

In other words, in this algorithm, the governing 

equations of the external mode are extracted from the 

introduced governing equations by depth integration, 

and after applying the boundary conditions in the sigma 

coordinates, they are written as follows: 
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In these equations, the bar sign on the velocities 

indicates their average value in the depth and from the 

relationships 

U̅ = ∫ Udσ
0

−1
 and V̅ = ∫ Vdσ

0

−1
 are determined. The 

wind stress components are also shown as 〈wu(0)〉 and 
〈wv(0)〉 and the floor stress components are also 

shown as 〈wu(−1)〉 and 〈wv(−1)〉 in the above 

equations. In these equations, the terms Gx and Gy, 

which are respectively the dispersion or diffusion terms 

in the x and y directions, are defined as follows: 
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The parameters F̃x and F̃y are also defined as follows: 
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The presented relations show that if A̅M is constant in 

the vertical direction, the F terms in relations 11 and 12, 

which are used to calculate the G terms, cancel each 

other. 

From the equations governing the external mode, it is 

clear that the main variables of this mode are water 

level fluctuations 𝜂 and the averaged components of the 

current velocity at depth U̅ and V̅ which are based on 

the values calculated from the three-dimensional 

equations (internal mode) and are constant throughout 

the external mode solution period. Calculations in this 

mode use a small-time step that is determined based on 

the stability conditions and the speed of the external 

wave. This condition, which is specified by Courant-

Friedrichs-Levy (CFL) criteria, is as follows: 
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Where Ct = 2(gH)1/2 + Umax . The value of Umax is 

the expected maximum speed in the solution range. 

There are other restrictions, but in most problems, the 

CFL stability condition is determinative. 

In the internal mode, considering that the effects of the 

rapid movement of gravity waves are removed, the 

CFL condition allows the use of larger time steps (Δ𝑡𝐼). 

Normally, the ratio of Δ𝑡𝐼 to Δ𝑡𝐸  changes in the range 

of 30 to 50 in coastal and ocean water circulation 

problems. Therefore, the model will include two 

calculation loops of internal mode and external mode, 

where the calculation loop of external mode with time 

step Δ𝑡𝐸  is placed inside the calculation loop of internal 

mode with time step Δ𝑡𝐼. In this solution algorithm, all 

terms on the right side of equations 9 and 10 are 

calculated in the time steps of the internal mode and are 

used in all the time steps of the external mode. Figure 

2 shows how to exchange information in both external 

and internal modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The external mode solution algorithm starts by 

calculating the horizontal flux values in x and y 

directions, based on the averaged velocities in depth. 

Then, using the flux values calculated in the previous 

step and based on the continuity equation, the amount 

of water level fluctuations ηi,j
n+1 is determined as 

follows: 
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In the following, equations 9 and 10 are solved 

explicitly and the values of U̅ and V̅ are calculated as 

follows: 
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where 𝜙 includes the transfer and velocity diffusion 

terms, water surface slope terms (gD
∂η

∂y
 and gD

∂η

∂x
), 

Coriolis terms and bed friction and the baroclinic 

pressure term. The terms related to the water level slope 

in these two equations are discretized as a weighted 

combination of new and old values of water level 

fluctuations as follows: 
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Figure 2. Relation of the internal and external mode in the POM model equation solving algorithm  
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The value of α = 0 will lead to a completely explicit 

solution, and as a result, the value of Δt have to be 

enough small to satisfy the CFL stability criteria. 

Therefore, in the POM model, the value of α=0.225 has 

been used, and therefore, the value of Δt can be 

increased a little bit in the calculations. 

The remaining terms of 𝜙 are calculated based on the 

values obtained from the relevant variables from the 

last time step of the internal mode and are considered 

constant during all the time steps of the external mode 

corresponding to that internal mode. After completing 

the loop calculations related to the external mode, the 

values of the three-dimensional velocity components in 

the X and Y directions are modified in such a way that 

their depth-averaged values are equal to the depth-

averaged velocity values obtained from the external 

mode calculations. After this modification, by applying 

the continuity equation for each cell along the water 

column, the values of vertical velocity ω in different 

layers are calculated. 

Further, in order to solve equations 2 and 3 and obtain 

the values of U and V in the new time, the calculations 

are divided into two explicit and implicit parts. In the 

explicit calculation section, the effect of horizontal 

diffusion terms along with bed friction, Coriolis force, 

and forces caused by density difference are determined 

on velocity changes, and in the implicit calculation 

section, the effect of vertical diffusion is applied to 

velocity field changes. This division is due to the 

necessity of using small spatial steps in the vertical 

direction near the surface and floor for this process. In 

other words, if the explicit solution is used in this 

process, the limitation of using small time steps to 

satisfy the stability conditions of the solution should be 

observed, which will increase the calculation time. 

 
2.4. Applying an implicit algorithm for solving two-

dimensional equations in the POM 

Explicitly solving the equations governing the motion 

of the gravitational wave in the external mode and as a 

result the limitation of the time step value of the 

calculations in wide ranges will cause the calculation 

time to be prolonged. Therefore, it was decided that the 

governing equations of this mode, which are in fact the 

same equations integrated in depth, using the projection 

method that was first introduced by Chorin [16] and 

using an implicit method to discretize the pressure term 

of the solution be made. 

The use of this method, in addition to providing the 

possibility of using larger time steps in the external 

mode, also reduces the amount of numerical diffusion, 

which is one of the characteristics of explicit methods. 

In this method, as shown in Figure 3, after determining 

the calculation cells, the solution space is divided into 

horizontal and vertical blocks. The calculation variable 

of horizontal blocks is water level fluctuations and 

speed in x direction, while the calculation variable of 

vertical blocks is water level fluctuations and speed in 

y direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following, the remaining part of the momentum 

equations is discretizing the form of a weighted 

combination (β) from the implicit and explicit solution 

of the gravitational wave term and the explicit solution 

of the other terms. Assuming P = U̅D and Q = V̅D , the 

remaining part of the momentum equation in the x and 

y directions will be as follows: 

 

Wet cell 

Dry cell 

y 

x 

 

Figure 3. Schematic example of defining computational blocks in x and y direction in the implicit solution 

algorithm of external mode for POM  
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where ϕ includes Coriolis terms, bed friction, wind 

stress and density changes which all are explicitly 

calculated and applied in the form of source-sink terms 

in the equation. 

At the same time, the continuity equation is separated 

in two stages with time steps Δt/2 in such a way that in 

the first stage the value of η is taken from time n to 

n+1/2 and in the second stage it is brought from n+1/2 

to n+1. Each of these two steps can be done in x or y 

direction blocks. For example, the discretized form of 

the continuity equation, if the equations are solved first 

in the x direction block and then in the y direction 

block, will be as follows: 
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As can be seen, the unknowns of equation 22 are 

ηi,j
n+1/2

 , Pi,j
n+1 and Pi+1,j

n+1 that by substituting the terms 

Pi+1,j
n+1 and Pi,j

n+1 from equation 20 and rewriting 

equation 22, an equation in terms of  ηi+1,j
n+1/2

, 

ηi,j
n+1/2

 and ηi−1,j
n+1/2

 will be obtained. By applying these 

equations to all the cells of each x -direction block and 

applying the boundary conditions, a system of three-

dimensional equations is obtained, by solving which 

the values of water level fluctuations in all the cells of 

each block are calculated simultaneously at the n+1/2 

level. Next, by using equation 20, the values of current 

flux and speed in the x direction are also obtained at the 

n+1 time level. 

 

After this step, the second part of the continuity 

equation, equation 23, is used for y-direction blocks. 

As can be seen, the unknowns of this relationship are 

ηi,j
n+1 , Qi,j

n+1  and Qi,j+1
n+1  . At this stage, by replacing the 

terms Qi,j+1
n+1  and Qi,j

n+1 from equation 21 and rewriting 

equation 23, an equation in terms of  ηi,j+1
n+1

  , ηi,j
n+1

  

and ηi,j−1
n+1

 will be obtained, which by applying these 

equations to all the cells of each y-direction block and 

applying boundary conditions, a system of three-

dimensional equations is obtained, by solving which 

the values of water level fluctuations in all the cells of 

each y-direction block are calculated simultaneously at 

the n+1 level. In the following, by using the equation 

21, the values of the current flux in the y-direction at 

the n+1 time scale are obtained. 

 

Also, in order to maintain the symmetry and uniformity 

of the solution in one time step, first the equations are 

solved in the x direction and then the equations are 

solved in the y direction, and this order is reversed in 

the next time step 

 

3. Evaluation and comparison of the 

performance of the original model and the 

modified model  
In order to evaluate and compare the performance of 

the POM research model and the correction algorithm 

applied in it, the simulation of tidal currents in the 

Persian Gulf was put on the agenda. For this purpose, 

preliminary measures such as data collection including 

geometric and bathymetric boundaries of the solution 

area, tidal information in the open boundary and 

information of tidal fluctuations inside the solution area 

were carried out to validate the model results. 

In Figure 4, the studied area, the location of the stations 

with tidal level data, as well as the bathymetry of the 

studied area are shown. 

In this study, in order to simulate currents caused by 

tides in the Persian Gulf, the recorded values of water 

level fluctuations at Bandar Jask station shown in 

Figure 5, were used as open boundary conditions. 

According to the scale of tidal currents, the period of 

adaptation of the model to the cold initial condition is 

several days. Therefore, by introducing the initial 

condition equal to the stationary state in the Persian 

Gulf and introducing the tidal values in Jask port as the 

open boundary conditions of the POM model, the 
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simulation of the currents caused by the tides during the 

months of July and August in 2018 has been done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computational grid used in this study was in the 

form of square cells with dimensions of 6 km and 10 

sigma layers in the vertical direction. Considering the 

need to satisfy the stability conditions governing the 

external mode of the main model, the time steps of the 

external and internal mode of the simulation with the 

original model were chosen equal to 30 and 600 

seconds, respectively. 

Although the implicit characteristic of the modified 

external mode algorithm removes the limitation of the 

time step of that mode, it can affect the accuracy of the 

results. Therefore, the external mode time step of the 

modified model was chosen equal to 50 seconds, and 

as a result, the number of external mode calculations 

performed within each internal mode is reduced from 

20 times to 12 times. Of course, it should be noted that 

due to the fact that in the modified algorithm, the 

equations will be solved in each time step for each x 

and y direction blocks of computational grid, the speed 

of calculations will not increase in the same proportion 

as the number of time steps decreases. 

In order to observe and compare the results of the 

simulation of the tidal currents of the Persian Gulf in 

the mentioned time period, the recorded data of tidal 

fluctuations in this time period from the stations of 

Bandar Bushehr, Bandar Kangan and Bandar Shahid 

Rajai, whose locations are shown in Figure 4, has been 

were compared with the results of the original model 

and the modified model at these points. 

To ensure the elimination of the effects caused by 

unrealistic initial conditions, this comparison was made 

from the 10th day of the simulation, that is, from July 

10 to August 10. Figures 6 show a comparison of the 

tidal level simulated in the mentioned stations by the 

original model (explicit solution of the external mode, 

POM-EXP) and the modified model (implicit solution 

of the internal mode, POM-IMP) with the data 

measured in these stations. 
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Figure 4. The studied area, its bathymetry and the location of tide measurement stations in Shahid Rajaei, Kangan 

and Bushehr ports  
 

 

Figure 5. Tide measured at Jask station used as open boundary condition  
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As shown in the presented graphs, the results of the 

modified model (POM-IMP) compared to the original 

model (POM-EXP) have simulated the maximum and 

minimum values of the water level more appropriately. 

This issue, which can be due to the less numerical 

diffusion of the modified algorithm, is more evident in 

Bushehr Port station, which is further away from the 

open boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The computational time of the original model and the 

modified model on a personal computer for this 

simulation was 1853 and 1456 seconds, respectively. 

Therefore, in the mentioned example, with the help of 

the modified algorithm and a 67% increase in the time 

step used in the external mode, in addition to reducing 

the value of numerical diffusion, the calculation speed 

has also increased by 21.4%. 

In order to better compare the results of the two models, 

the Q-Q plots of the results of the two models and the 

measured values along with the statistical parameters 

of the root mean square errors (RMSE) and correlation 

coefficients are shown in Figure 7. 

 

Figure 6. Comparison of water level fluctuations calculated by Original and Modified POM model with measured 

values in Shahid Rajaei, Kangan and Bushehr port stations  
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As can be deduced from these graphs, the results 

obtained from the implicit algorithm applied in the 

numerical model of POM, in the two stations of Bandar 

Bushehr and Bandar Kangan, have less error than the 

results obtained from the implementation of the 

original model. 

 

5. Conclusions 
Acquaintance, modification and use of research 

numerical models with available code is a shortcut to 

access a numerical model for simulating different 

processes. 

In this article, we have presented a new implementation 

of the projection method in the external mode of 

Princeton Ocean Model (POM), and assessed its 

performance in simulating tidal currents in the Persian 

Gulf.  

By comparing our results with the results obtained 

using the original POM model and observational data, 

we showed that this approach can not only simulate the 

dynamics of tidal currents in the Persian Gulf more 

accurately by reducing the numerical diffusion, but also 

can speed up the calculations by increasing the time 

step of external mode. 
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