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We can divide atmosphere into two mediums, barotropic and baroclinic. Due to 

horizontal gradient of density, baroclinic medium causes to produce various 

horizontal gradient of pressure with respect to height and implies various 

horizontal velocities at different layers of the atmosphere. Therefore; 

geostrophic wind varies with respect to height in this medium. 

The horizontal gradient of density not only would produce by horizontal 

gradient of temperature, but also by horizontal gradient of humidity or 

combination of both. 

If horizontal gradient of density would be by both horizontal gradient of 

temperature and horizontal gradient of humidity – as they are existing in natural 

air – in the case; vectorial difference of geostrophic wind with respect to height 

is; dense wind. 

If horizontal gradient of density is related to gradient of temperature solely; 

vectorial difference between geostrophic wind from top level and bottom level 

of the layer is; thermal wind. 

And if horizontal gradient of density is solely related to gradient of specific 

humidity; vectorial difference between geostrophic wind from top level and 

bottom level of the layer is; moist wind. 

The purpose of this paper is confirmation of three versions of dense wind, 

introduction five particular types of thermal wind and present two prominent 

types of moist wind in natural medium of air. Formulae related to each type are 

derived and every one of them, represents effects of one type of variation of 

geostrophic wind with respect to height. 
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1. Introduction 
In part I of “A New Look at the Vertical Shear of the 

Geostrophic Wind: Dense Wind” we referred to some 

historical experiments about vertical shear of the 

geostrophic wind and number of basic ideas in 

connection with definition and deriving formulae to 

describe “Dense Wind”. [1] 

We pointed out that various heat flux or humidity flux 

can lead to produce baroclinic atmosphere and in turn; 

variation of geostrophic wind in vertical direction. 

Furthermore, there is direct interaction between heat or 

humidity flux with wind shear. 

In connection with the subject and as one feature of the 

role of heat flux to wind shear; Kim et. al. in their study 

through large-eddy simulation found out, that constant 

kinematic heat flux of 0.05 Jm−2s−1causes for varying 

geostrophic wind speeds from 5 to 15ms−1. Heat flux 

profiles show that the maximum entrainment heat flux 

as a fraction of the surface heat flux, increases from 

0.13 to 0.30 in magnitude with increasing wind shear. 

The thickness of the entrainment layer, relative to the 

depth of the well-mixed layer, increases substantially 

from 0.36 to 0.73  with increasing wind shear. [2] 

Now, some important points of part I are as follows: 

1 – 1 – Vertical shear of the wind was research work of 

meteorologists in previous century. Among of them, 

we referred to works of Charnock et al. [3], Carlstead 

[4], Estoque [5] and Foster and Levy [6]. 

1 – 2 – Also we mentioned that all researchers those 

have been worked on the variation of geostrophic wind 

with respect to height, had two common ideas. They 

have been called difference between two geostrophic 

wind vectors at two pressure levels; the thermal wind 

as the first idea. In addition, they have been assumed 

the atmosphere is dry air, as a second idea. 
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Especially, this subject with same hypotheses, has been 

used in dynamic meteorology’s text books, that is to 

say, in introducing of thermal wind, they assumed 

atmosphere is dry and derived formulae related to the 

subject in this case; although this assumption used for 

simplicity of the work. For instance, the subject is 

written in Hess’s text book [7], Gill’s text book [8], 

Dutton’s text book [9], Holton and Hakim’s text book 

[10] and in other dynamic meteorology text books. In 

addition; thermal wind has an entrée in Glossary of 

Meteorology [11] with the same descriptions. [1] 

 1 – 3 – Moreover, after some description of 

geostrophic wind in pressure coordinates system 1 ; 

reason of variation of geostrophic wind with respect to 

height showed by logical argument and figure 1. 
 

 
Figure 1. Relationship between vertical shear of the geostrophic 

wind and horizontal height gradients. (Note that 𝟎 < 𝜹𝒑) [10] 

 

Afterward; we defined “Dense Wind” as “vectorial 

difference of geostrophic wind vector at upper level 

and geostrophic wind vector at lower level” (of the 

atmospheric layer), that is: 
 

𝕧D ≡ 𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1)     (1-D) 

 

where in Equation (1) 𝕧D stands for dense wind vector, 

𝕧𝑔 is geostrophic wind, and subscripts 𝑝1 and 𝑝2 refer 

to pressure levels in the manner that level 𝑝2 has more 

height than level 𝑝1, i.e., 𝑝2 < 𝑝1. 

According to definition (1); eastward and northward 

components of dense wind can be shown as following: 
 

𝑢D = 𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1)              (2-D-a) 

 

and 
 

𝑣D = 𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1)             (2-D-b) 

  

                                                                          
1 In the part I and in this paper (part II); whenever we refer to 

“pressure coordinates system” our purpose is “Cartesian 

where 𝑢D is eastward component of dense wind, 𝑢𝑔 is 

eastward component of geostrophic wind, 𝑣D  is 

northward component of dense wind, 𝑣𝑔 is northward 

component of geostrophic wind and subscripts 𝑝1 and 

𝑝2 refer to pressure levels in the manner that level 𝑝2 

has more height than level 𝑝1, i.e., 𝑝2 < 𝑝1. 

Typical layer of atmospheric system is shown in figure 

2. 

Despite its name, dense wind, while a vector, is not a 

true wind. Instead, it is a geostrophic wind shear, 

representing the change of wind with respect to height, 

causing some advections. [1] 
 

 
Figure 2. Typical layer of atmospheric system. 

 

1 – 4 – Furthermore, with using a number of formulae 

from a few text books same as Curry and Webster [12], 

Iribarne and Godson [13] and Haltiner and Williams 

[14]; we derived three versions of dense wind’s 

equations, vectors and components. [1] 

1 – 5 – For the first version of dense wind; dense wind 

equation is: 
 

𝜕𝕧𝑔

𝜕𝑝
=

1

𝑓(𝜌M)2 (𝕜𝑝 × ∇𝑝𝜌M)              (3-D-I) 

 

and first version of dense wind vector is: 
 

𝕧DI
=

1

𝑓
∫ [

1

(𝜌M)2 (𝕜𝑝 × ∇𝑝𝜌M)]
𝑝2

𝑝1
𝑑𝑝            (4-D-I) 

 

where in equations (3-D-I) and (4-D-I), 𝕧𝑔  is 

geostrophic wind, 𝑝  is pressure, 𝑓  is Coriolis 

parameter, 𝜌M  stands for density of humid air, 𝕜𝑝  is 

vertical unit vector in pressure coordinates system, ∇𝑝 

is gradient operator in pressure coordinates system,𝕧DI
 

stands for first version of dense wind vector, 𝑝1  is 

atmospheric pressure at lower level of the atmospheric 

layer and 𝑝2 is atmospheric pressure at upper level of 

the atmospheric layer. 

Eastward and northward components of first version of 

dense wind can be derived from equation (4-D-I) 

directly: 
 

𝑢DI
= −

1

𝑓
∫ (

1

(𝜌M)2

𝜕𝜌M

𝜕𝑦
)

𝑝2

𝑝1
𝑑𝑝        (5-D-I-a) 

 

coordinates system with pressure as vertical coordinate”. 

Note this coordinates system is “Left-handed system”. 
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and 
 

𝑣DI
=

1

𝑓
∫ (

1

(𝜌M)2

𝜕𝜌M

𝜕𝑥
)

𝑝2

𝑝1
𝑑𝑝        (5-D-I-b) 

 

where in equation (5-D-I-a) 𝑢DI
 is eastward component 

of first version of dense wind and 𝑦 is northward axis 

of pressure coordinates system. In addition; in equation 

(5-D-I-b) 𝑣DI
 stands for northward component of first 

version of dense wind and 𝑥  is eastward axis of 

pressure coordinates system. 

In this case; clockwise rotation of geostrophic wind 

with respect to height, associated with light air 

advection and counterclockwise turning of geostrophic 

wind with respect to height connected with dense air 

advection. [1] 

1 – 6 – For the second version of dense wind; dense 

wind equation is: 
 

𝜕𝕧𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
(𝕜𝑝 × ∇𝑝𝑇𝑣)            (3-D-II) 

 

and second version of dense wind vector is: 
 

𝕧DII
= −

𝑅𝑑

𝑓
∫ (𝕜𝑝 × ∇𝑝𝑇𝑣)𝑑 ln 𝑝

𝑝2

𝑝1
           (4-D-II) 

 

where in equations (3-D-II) and (4-D-II);  𝑅𝑑  is gas 

constant for dry air, 𝑇𝑣  stand for virtual temperature, 

𝕧DII
 is second version of dense wind vector and other 

symbols are defined under 1 – 5.   

Eastward and northward components of second version 

of dense wind can be derived from equation (4-D-II) 

directly as follows: 
 

𝑢DII
=

𝑅𝑑

𝑓
∫

𝜕𝑇v

𝜕𝑦

𝑝2

𝑝1
𝑑 ln 𝑝              (5-D-II-a) 

 

and 
 

𝑣DII
= −

𝑅𝑑

𝑓
∫

𝜕𝑇v

𝜕𝑥

𝑝2

𝑝1
𝑑 ln 𝑝         (5-D-II-b) 

 

where in equation (5-D-II-a), 𝑢DII
 is eastward 

component of second version of dense wind, 𝑦  is 

northward axis in pressure coordinates system and in 

equation (5-D-II-b), 𝑣DII
is northward component of 

second version of dense wind and 𝑥 is eastward axis of 

pressure coordinates system. In the case of second 

version of dense wind; clockwise rotation of 

geostrophic wind with respect to height, associated 

with warmer or more humid air advection and 

counterclockwise turning of geostrophic wind with 

respect to height connected with colder or less humid 

air advection. [1] 

1 – 7 – For the third version of dense wind; dense wind 

equation is: 
 

𝜕𝕧𝑔

𝜕𝑝
=

1

𝑓
𝕜𝑝 × ∇𝑝 (

𝜕Φ

𝜕𝑝
)           (3-D-III) 

 

and third version of dense wind vector is: 
 

𝕧DIII
=

1

𝑓
𝕜𝑝 × ∇𝑝(Φ2 − Φ1)          (4-D-III) 

 

where in equation (3-D-III) Φ is geopotential and in 

equation (4-D-III) 𝕧DIII
 stands for third version of 

dense wind vector, Φ2 refers to geopotential of upper 

level and Φ1 points to geopotential of lower level of the 

atmospheric layer and other symbols are defined under 

1 – 5.   

Eastward and northward components of third version 

of dense wind can be derived from equation (4-D-III) 

directly as follows: 
 

𝑢DIII
= −

1

𝑓

𝜕

𝜕𝑦
(Φ2 − Φ1)      (5-D-III-a) 

 

and 
 

𝑣DIII
=

1

𝑓

𝜕

𝜕𝑥
(Φ2 − Φ1)          (5-D-III-a) 

 

where in equation (5-D-III-a), 𝑢DIII
 is eastward 

component of third version of dense wind, 𝑦  is 

northward axis in pressure coordinates system and in 

equation (5-D-III-b), 𝑣DIII
is northward component of 

third version of dense wind and 𝑥 is eastward axis of 

pressure coordinates system. Finally, in the case of 

third version of dense wind; clockwise rotation of 

geostrophic wind with respect to height, associated 

with advection of atmospheric thicker layer and 

counterclockwise turning of geostrophic wind with 

respect to height connected with advection of less 

thickness layer of atmosphere. [1] 

Following part I; in this part; we focus on special cases 

of dense wind. 
 

2. Special cases of Dense Wind 
In part I of “A New Look at the Vertical Shear of 

Geostrophic Wind: Dense Wind” we referred to virtual 

temperature as follows: 
 

𝑇𝑣 = (1 + 0.608𝑞)𝑇         (6) 
 

where in equation (6) 𝑞  is specific humidity and 𝑇 

stands for temperature. [12] 

Choosing equivalent of 𝑇𝑣  from equation (6) and 

substituting into equation (4-D-II) yields: 
 

𝕧DII
= −

𝑅𝑑

𝑓
∫ [𝕜𝑝 × ∇𝑝(1 + 0.608𝑞)𝑇]𝑑 ln 𝑝

𝑝2

𝑝1
  

         (7-D-II) 
 

Equation (7-D-II) is dense wind vector in terms of gas 

constant for dry air, Coriolis parameter, pressures of 

below and upper levels of atmospheric layer, unit 

vector of vertical axis of pressure coordinates system, 

specific humidity of air, air temperature and logarithm 

of air pressure. 

Now, we consider equation (5-D-II-a), i.e.: 
 

𝑢DII
=

𝑅𝑑

𝑓
∫

𝜕𝑇v

𝜕𝑦

𝑝2

𝑝1
𝑑 ln 𝑝          (5-D-II-a) 
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First of all, we do integration on equation (5-D-II-a): 
 

𝑢DII
=

𝑅𝑑

𝑓

𝜕〈𝑇v〉

𝜕𝑦
ln (

𝑝2

𝑝1
)         (8) 

 

where in equation (8), 〈… 〉 refers to vertical average of 

phrase or parameter in the layer enclosed by 𝑝1 and 𝑝2 

pressure levels.2 

If we select equivalent of 𝑇𝑣 from equation (6), insert 

into equation (8) and applying derivation, yields: 
 

𝑢DII
=

𝑅𝑑

𝑓
[(

0.608
𝜕〈𝑞〉

𝜕𝑦
〈𝑇〉 +

(1 + 0.608〈𝑞〉)
𝜕〈𝑇〉

𝜕𝑦

)] ln (
𝑝2

𝑝1
)   (9-D-II-a) 

 

And with the same manner, one can find out from 

equation (5-D-II-b): 
 

𝑣DII
= −

𝑅𝑑

𝑓
[(

0.608
𝜕〈𝑞〉

𝜕𝑥
〈𝑇〉 +

(1 + 0.608〈𝑞〉)
𝜕〈𝑇〉

𝜕𝑥

)] ln (
𝑝2

𝑝1
) (9-D-II-b) 

 

Equations (9-D-II-a) and (9-D-II-b) show component 

equations of second version of dense wind, in terms of 

gas constant for dry air, Coriolis parameter, specific 

humidity, temperature and pressure. In addition; 

symbol 〈… 〉  refers to vertical average of phrase or 

parameter in the layer enclosed by 𝑝1 and 𝑝2 pressure 

levels. 

And, as we noticed in part I; our aim in this research is, 

looking for geostrophic wind shear in the condition of 

real atmosphere. 

However, a question that arises from the above-

mentioned paragraph is; if we consider atmosphere as 

natural atmosphere including humidity; then how the 

looking to variation of the wind in vertical direction 

should be modify? In this research, the variation of the 

geostrophic wind with respect to height will be 

considered in the natural atmosphere, as well as dry air. 
 

2.1. First special case of dense wind: Thermal wind 

If the air would be assumed dry3, i.e.: 
 

𝑞 = 0         (10) 
 

or air is humid but specific humidity is constant4 that 

is: 
 

𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡        (11) 
 

                                                                          
2 For more details of “Vertical averaging” see [1] 
3 This case is not real, and assumption is for simplicity of 

deriving formulae of special cases of dense wind. 
4 Existence of this condition is possible for air over ocean 

especially at nights.   
5 This case can be occurred in tropic regions in the dry 

season. Also; it is possible to be the case at the surface of 

oceans in mid-latitude in days, upon conditions that: a) low 

or horizontal gradient of vertical mean for specific 

humidity in the atmospheric layer may be zero5, so that: 
 

[
𝜕〈𝑞〉

𝜕𝑥
= 0  and  

𝜕〈𝑞〉

𝜕𝑦
= 0]   but  

𝜕𝑞

𝜕𝑝
≠ 0    (12) 

 

In these conditions; the variation of density in the 

horizontal direction is merely related to variation of 

temperature in horizontal direction causing baroclinity6 

of the atmosphere. In these circumstances; we define 

the vectorial difference of geostrophic wind vector at 

upper level and geostrophic wind vector at lower level 

of the atmospheric layer as, thermal wind, i.e.: 
 

𝕧T ≡ 𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1)                 (1-T) 

 

where in Equation (1-T) 𝕧T stands for thermal wind 

vector, 𝕧𝑔 is geostrophic wind and subscripts 𝑝1 and 𝑝2 

refer to pressure levels in the manner that level 𝑝2 has 

more height than level 𝑝1, i.e., 𝑝2 < 𝑝1. 

According to definition (1-T); eastward and northward 

components of thermal wind can be shown as 

following: 
 

𝑢T = 𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1)              (2-T-a) 

 

and 
 

𝑣T = 𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1)              (2-T-b) 

 

where in equations (2-T-a) and (2-T-b) 𝑢T is eastward 

component of thermal wind, 𝑣T is northward 

component of thermal wind, 𝑢𝑔 is eastward component 

of geostrophic wind, 𝑣𝑔 is northward component of 

geostrophic wind and subscripts 𝑝1 and 𝑝2 refer to 

pressure levels in the manner that level 𝑝2 has more 

height than level 𝑝1, i.e., 𝑝2 < 𝑝1. 

Approaching to derive thermal wind has two branches. 

1 – Temperature branch and 2 – Geopotential branch.  
 

2.1.1 Thermal wind; Approach by Temperature  

Approaching thermal wind by temperature has three 

particular types those will describe in following parts. 
 

2.1.1.1 First particular type of the thermal wind  

Now, we assume that air is dry by taking 𝑞 = 0. 

Geostrophic wind can be introduced by: 
 

𝕧𝑔 = 𝑓−1𝕜𝑝 × ∇𝑝Φ       (13) 

 

difference between two latitudes and b) no existence of 

atmospheric system. However, this idea should be tested 

with observations.   
6 Baroclinity is the state of baroclinic atmosphere or 

baroclinic ocean. That state is existence of horizontal 

variation of density and is described in part I of “A New Look 

at the Vertical Shear of the Geostrophic Wind” 
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where in equation (13) 𝕧𝑔 is geostrophic wind vector, 

𝑓  is Coriolis parameter, 𝕜  is vertical unit vector, 

subscript 𝑝  shows that equation (13) is written in 

pressure coordinates system, ∇ is operator for gradient, 

Φ  is geopotential and again, subscript 𝑝  shows that 

coordinates system is pressure coordinates system.  

Furthermore, equation (13) shows the magnitude of 

geostrophic wind is proportional to the horizontal 

gradient of geopotential and is parallel to equipotential 

lines on isobaric surface. [10] 

Writing eastward and northward components of 

geostrophic wind yields following equations: 
 

𝑢𝑔 =  − 
1

𝑓

∂Φ

𝜕𝑦
                (14-a) 

 

and 
 

𝑣𝑔 =   
1

𝑓

∂Φ

𝜕𝑥
                (14-b) 

 

where in equation (14-a) 𝑢𝑔 is eastward component of 

geostrophic wind or eastward component of 

geostrophic current in ocean, and in equation (14-b) 𝑣𝑔 

is northward component of geostrophic wind or 

northward component of geostrophic current in ocean. 

Now, if we differentiate equations (14-a) and (14-b) 

with respect to 𝑝, we get: 
 

𝜕𝑢𝑔

𝜕𝑝
= −

1

𝑓

𝜕

𝜕𝑝
(

𝜕Φ

𝜕𝑦
) = −

1

𝑓

𝜕

𝜕𝑦
(

𝜕Φ

𝜕𝑝
)             (15-a)  

 

and 
 

𝜕𝑣𝑔

𝜕𝑝
=

1

𝑓

𝜕

𝜕𝑝
(

𝜕Φ

𝜕𝑥
) =

1

𝑓

𝜕

𝜕𝑥
(

𝜕Φ

𝜕𝑝
)              (15-b) 

 

The equation of state for dry air is: [10] 
 

𝑝 = 𝜌𝑅𝑑𝑇        (16) 
 

where in equation (16), 𝑝  is pressure, 𝜌  is dry air 

density, 𝑅𝑑  is gas constant for dry air and 𝑇  is its 

temperature. In pressure coordinates system; 

hydrostatic equation, applying for dry air and 

considering the equation of state for dry air, i.e., 

equation (16); is [13]: 
 

𝜕Φ

𝜕𝑝
= −𝛼 = −

1

𝜌
= −

𝑅𝑑𝑇

𝑝
                  (17) 

 

where 𝛼 is specific volume of dry air. 

If we select equivalent of  
𝜕Φ

𝜕𝑝
  from equation (17) that 

is −
𝑅𝑑𝑇

𝑝
 and substitute in equations (15-a) and (15-b), 

we get: 
 

𝜕𝑢𝑔

𝜕𝑝
= −

1

𝑓

𝜕

𝜕𝑦
(−

𝑅𝑑𝑇

𝑝
)                (18-a) 

 

and  
 

𝜕𝑣𝑔

𝜕𝑝
=

1

𝑓

𝜕

𝜕𝑥
(−

𝑅𝑑𝑇

𝑝
)                (18-b) 

 

Rearranging equations (18-a) and (18-b) will be: 
 

𝑝
𝜕𝑢𝑔

𝜕𝑝
≡

𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅𝑑

𝑓
(

𝜕𝑇

𝜕𝑦
)

𝑝
                     (19-T-I-a) 

 

and 
 

𝑝
𝜕𝑣𝑔

𝜕𝑝
≡

𝜕𝑣𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
(

𝜕𝑇

𝜕𝑥
)

𝑝
                    (19-T-I-b) 

 

where in equations (19-T-I-a) and (19-T-I-b) subscript 

𝑝 points that derivative is down with constant 𝑝. If we 

compound equations (19-T-I-a) and (19-T-I-b), we get 

“Thermal wind equation by first particular type” that 

is: 
 

𝜕𝕧𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
(𝕜𝑝 × ∇𝑝𝑇)              (3-T-I) 

 

By integrating of equation (3-T-I) from lower pressure 

level 𝑝1 to upper pressure level 𝑝2 (𝑝2 < 𝑝1) of the 

atmospheric layer; one can derive “First particular 

type of thermal wind vector”: 
 

𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1) ≡ 𝕧TI
= −

𝑅𝑑

𝑓
∫ (𝕜𝑝 × ∇𝑝𝑇)𝑑 ln 𝑝

𝑝2

𝑝1
  

                (4-T-I) 
 

where in equation (4-T-I); 𝕧𝑔(𝑝2) is geostrophic wind 

vector at upper level of the atmospheric layer, 𝕧𝑔(𝑝1) is 

geostrophic wind vector at lower level of the 

atmospheric layer, 𝕧TI
 stands for first particular type of 

thermal wind vector, 𝑅𝑑 is gas constant for dry air, 𝑓 is 

Coriolis parameter, 𝑝1 is atmospheric pressure at lower 

level of the atmospheric layer, 𝑝2 is atmospheric 

pressure at upper level of the atmospheric layer, 𝕜𝑝 is 

vertical unit vector in pressure coordinates system, ∇𝑝 

stands for gradient operator in pressure coordinates 

system, 𝑇 is dry air temperature and 𝑝 is atmospheric 

pressure and vertical axis of pressure coordinates 

system. 

Eastward and northward components of the first 

particular type of thermal wind can be derived by 

vertical integration of equations (19-T-I-a) and          

(19-T-I-b) in vertical coordinate same as integration of 

equation (3-T-I), or determine the eastward and 

northward components of the first particular type of 

thermal wind from equation (4-T-I) directly: 
 

𝑢TI
=

𝑅𝑑

𝑓
∫

𝜕𝑇

𝜕𝑦
𝑑 ln 𝑝

𝑝2

𝑝1
           (5-T-I-a) 

 

and 
 

𝑣TI
= −

𝑅𝑑

𝑓
∫

𝜕𝑇

𝜕𝑥
𝑑 ln 𝑝

𝑝2

𝑝1
           (5-T-I-b) 

 

where in equation (5-T-I-a), 𝑢TI
 is eastward 

component of first particular type of thermal wind and 

in equation (5-T-I-b), 𝑣TI
 is northward component of 

first particular type of thermal wind. 

From first particular type of thermal wind vector or its 

components; one can find out that: 
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A: If we go from pole to equator, thermal wind 

becomes stronger7; 

B: If the horizontal gradient of temperature would be 

greater, thermal wind becomes stronger, because 

thermal wind is proportional to the horizontal gradient 

of temperature, and finally; 

C: If the pressure difference will be higher in the layer, 

thermal wind becomes more powerful. 

In this manner; representative of thermal wind vector, 

i.e., equation (4-T-I) shows that: “thermal wind blows 

parallel to isotherms, so that, warm dry air is located 

at the right side of downwind and cold dry air is located 

at the left side of downwind.” (In the northern 

hemisphere) This fact is illustrated in figures 3 and 4. 
 

 
Figure 3. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and warm dry 

air advection. In the case; 𝑻𝟎 is mean temperature of the layer 

and proportion coefficient 𝒌 is: 𝒌 = −
𝑹𝒅

𝒇
𝐥𝐧 (

𝒑𝟐

𝒑𝟏
) 

 
 

 
Figure 4. Relationship between counterclockwise turning of the 

geostrophic wind with respect to height (backing) and cold dry 

air advection. In the case; 𝑻𝟎 is mean temperature of the layer 

and proportion coefficient 𝒌 is:  𝒌 = −
𝑹𝒅

𝒇
𝐥𝐧 (

𝒑𝟐

𝒑𝟏
)  

 

As it is shown in figure 3; in the dry atmosphere, in 

which specific humidity is zero; a geostrophic wind 

that turns clockwise with respect to height (veering) is 

associated with warm dry air advection.   Conversely, 

as shown in figure 4; in the above-mentioned air, 

counterclockwise turning (backing) of the geostrophic 

                                                                          
7 Use of geostrophic wind in tropical regions must be with 

careful deliberation because geostrophic wind in these 

wind with respect to height, implies cold dry air 

advection by the geostrophic wind in the layer. 

It is therefore possible to obtain a reasonable estimate 

of the horizontal temperature advection and its vertical 

dependence at a given location solely from data on the 

vertical profile of the wind given by a single sounding.   

Alternatively, the geostrophic wind at any level can be 

estimated from the mean temperature field provided 

that the geostrophic velocity is known at a single level.   

Thus, for example, if the geostrophic wind at 850 hPa 

is known and the mean horizontal temperature gradient 

in the layer 850 – 500 hPa is also known, the first 

particular type of thermal wind equation can be applied 

to obtain the geostrophic wind at 500 hPa [10] 

First particular type of thermal wind vector, i.e., 

equation (4-T-I) has a simple form by integration with 

respect to vertical axis, as following: 
 

𝕧TI
= −

𝑅𝑑

𝑓
〈𝕜𝑝 × ∇𝑝𝑇〉 ln (

𝑝2

𝑝1
)            (20-T-I) 

 

Also, equation (20-T-I) can be written in simpler form 

as: 
 

𝕧TI
= −

𝑅𝑑

𝑓
(𝕜𝑝 × ∇𝑝〈𝑇〉) ln (

𝑝2

𝑝1
)          (21-T-I) 

 

In equations (20-T-I) and (21-T-I), 〈… 〉  is vertical 

average of phrase or parameter. 

Analogous to integration of equation (4-T-I); we can 

obtain simple form of equations (5-T-I-a) and (5-T-I-b) 

those show simple forms for components of first 

particular type of thermal wind vector for dry air; those 

are: 
 

𝑢TI
=

𝑅𝑑

𝑓

𝜕〈𝑇〉

𝜕𝑦
ln (

𝑝2

𝑝1
)         (22-T-I-a) 

 

and 
 

𝑣TI
= −

𝑅𝑑

𝑓

𝜕〈𝑇〉

𝜕𝑥
ln (

𝑝2

𝑝1
)         (22-T-I-b) 

 

Again, in equations (22-T-I-a) and (22-T-I-b), 〈… 〉 is 

vertical averaging of phrase or parameter and 

furthermore, in equation (22-T-I-a) 𝑢TI
 is eastward 

component of thermal wind by first particular type and 

in equation (22-T-I-b) 𝑣TI
 is northward component of 

first particular type of thermal wind. 

There is another method to derive first particular type 

of thermal wind; that at the moment, we don’t refer to 

it. 
 

2.1.1.2 Second particular type of the thermal wind 

In this condition that air is humid but humidity of 

atmosphere is constant, i.e., 𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ; and             

of course, the variation of density in the horizontal 

direction is merely related to variation of temperature 

regions is magnified and especially on equator is 

meaningless.  
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in horizontal direction and causes to produce baroclinic 

atmosphere. In the case, we define the vectorial 

difference of geostrophic wind vector at upper level 

and geostrophic wind vector at lower level of the 

atmospheric layer as, thermal wind again, i.e.: 
 

𝕧T ≡ 𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1)                 (1-T) 

 

And according to definition (1-T); eastward and 

northward components of thermal wind can be shown 

as following: 
 

𝑢T = 𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1)              (2-T-a) 

 

and 
 

𝑣T = 𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1)              (2-T-b) 

 

The equation of state for humid or moist air can be 

written as: [1] 
 

𝑝 = 𝜌M𝑅𝑑𝑇𝑣        (23) 
 

Where 𝑝 is pressure, 𝜌M is density of humid air, 𝑅𝑑 is 

gas constant for dry air and 𝑇𝑣 is virtual temperature. 

In pressure coordinates system, hydrostatic equation, 

applying for humid air and considering the equation of 

state; is [13]: 
 

𝜕Φ

𝜕𝑝
= −𝛼M = −

𝑅𝑑𝑇𝑣

𝑝
                     (24) 

 

where in equation (24), Φ is geopotential, 𝑝 is pressure 

as vertical coordinate, 𝛼M is specific volume of humid 

air, 𝑅𝑑 is constant gas for dry air and 𝑇𝑣 is virtual 

temperature. 

If we select equivalent of  
𝜕Φ

𝜕𝑝
  from equation (24) that 

is −
𝑅𝑑𝑇𝑣

𝑝
 and substitute in equations (15-a) and (15-b), 

we get: 
 

𝜕𝑢𝑔

𝜕𝑝
= −

1

𝑓

𝜕

𝜕𝑦
(−

𝑅𝑑𝑇𝑣

𝑝
)                (25-a) 

 

and 
 

𝜕𝑣𝑔

𝜕𝑝
=

1

𝑓

𝜕

𝜕𝑥
(−

𝑅𝑑𝑇𝑣

𝑝
)                          (25-b) 

 

or 
 

𝑝
𝜕𝑢𝑔

𝜕𝑝
=

𝑅𝑑

𝑓
(

𝜕𝑇𝑣

𝜕𝑦
)

𝑝
                            (26-a) 

 

and 
 

𝑝
𝜕𝑣𝑔

𝜕𝑝
= −

𝑅𝑑

𝑓
(

𝜕𝑇𝑣

𝜕𝑥
)

𝑝
                    (26-b) 

 

where in equations (26-a) and (26-b) subscript 𝑝 points 

that derivative is down with constant 𝑝. 

Considering equations (26-a) and (26-b) and substitute 

equivalent of 𝑇𝑣 form equation (6) into these equations 

yields: 
 

𝑝
𝜕𝑢𝑔

𝜕𝑝
=

𝑅𝑑

𝑓
[

𝜕(1+0.608𝑞)𝑇

𝜕𝑦
]

𝑝
                      (27-a) 

 

and 
 

𝑝
𝜕𝑣𝑔

𝜕𝑝
= −

𝑅𝑑

𝑓
[

𝜕(1+0.608𝑞)𝑇

𝜕𝑥
]

𝑝
                             (27-b) 

 

or 
 

𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅𝑑

𝑓
[

𝜕(1+0.608𝑞)𝑇

𝜕𝑦
]

𝑝
               (28-a) 

 

and 
 

𝜕𝑣𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
[

𝜕(1+0.608𝑞)𝑇

𝜕𝑥
]

𝑝
                 (28-b) 

 

By considering condition (11), i.e., 𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, we 

can rewrite equations (28-a) and (28-b) as following: 
 

𝜕𝑢𝑔

𝜕 ln 𝑝
= (1 + 0.608𝑞)

𝑅𝑑

𝑓
(

𝜕𝑇

𝜕𝑦
)

𝑝
                   (19-T-II-a) 

 

and 
 

𝜕𝑣𝑔

𝜕 ln 𝑝
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
(

𝜕𝑇

𝜕𝑥
)

𝑝
                  (19-T-II-b) 

 

Equations (19-T-II-a) and (19-T-II-b) can be combined 

as vector form: 
 

𝜕𝕧𝑔

𝜕 ln 𝑝
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
(𝕜𝑝 × ∇𝑝𝑇)           (3-T-II) 

 

Equation (3-T-II) is “Second particular type of thermal 

wind equation”. 

By integration of equation (3-T-II) from lower pressure 

level 𝑝1 to upper pressure level 𝑝2, (𝑝2 < 𝑝1) of the 

atmospheric layer; one can derive “Second particular 

type of thermal wind vector” that is: 
  

𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1) ≡ 

𝕧TII
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
∫ (𝕜𝑝 × ∇𝑝𝑇)𝑑 ln 𝑝

𝑝2

𝑝1
  

              (4-T-II) 
 

where in equation (4-T-II); 𝕧𝑔(𝑝2) is geostrophic wind 

vector at upper level of the atmospheric layer, 𝕧𝑔(𝑝1) is 

geostrophic wind vector at lower level of the 

atmospheric layer with constant specific humidity, 𝕧TII
 

stands for second particular type of thermal wind 

vector, 𝑞 is specific humidity, 𝑅𝑑 is gas constant for dry 

air, 𝑓 is Coriolis parameter, 𝑝1 is atmospheric pressure 

at lower level of the atmospheric layer, 𝑝2 is 

atmospheric pressure at upper level of the atmospheric 

layer, 𝕜𝑝 is vertical unit vector in pressure coordinates 

system, ∇𝑝 stands for gradient operator in pressure 

coordinates system, 𝑇 is air temperature and 𝑝 is 

atmospheric pressure and vertical axis of pressure 

coordinates system. 

Eastward and northward components of second 

particular type of thermal wind can be derived by 
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vertical integration of equations (30-T-II-a) and        

(30-T-II-b) same as integration of equation (3-T-II), or 

determine the eastward and northward components of 

second particular type of thermal wind from equation 

(4-T-II) directly: 
 

∫ 𝑑𝑢𝑔
𝑝2

𝑝1
= (1 + 0.608𝑞)

𝑅𝑑

𝑓
∫ (

𝜕𝑇

𝜕𝑦
) 𝑑 ln 𝑝

𝑝2

𝑝1
         (29-a) 

 

and 
 

∫ 𝑑𝑣𝑔
𝑝2

𝑝1
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
∫

𝜕𝑇

𝜕𝑥

𝑝2

𝑝1
𝑑 ln 𝑝           (29-b) 

 

And after doing integration to left hand on both above 

mentioned equations, we get: 
 

𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1) ≡ 

𝑢TII
= (1 + 0.608𝑞)

𝑅𝑑

𝑓
∫ (

𝜕𝑇

𝜕𝑦
) 𝑑 ln 𝑝

𝑝2

𝑝1
        (5-T-II-a) 

 

and 
 

𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1) ≡ 

𝑣TII
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
∫ (

𝜕𝑇

𝜕𝑥
) 𝑑 ln 𝑝

𝑝2

𝑝1
       (5-T-II-b) 

 

where in equation (5-T-II-a), 𝑢TII
 is eastward 

component of the second particular type of thermal 

wind, and in equation (5-T-II-b), 𝑣TII
 is northward 

component of the second particular type of thermal 

wind. 

From second particular type of thermal wind vector or 

its components; one can find out that: 

A: If we go from pole to equator, thermal wind 

becomes stronger (with pay attention to footnote        

No. 7); 

B: If the horizontal gradient of temperature would be 

greater, thermal wind becomes stronger, because 

thermal wind is proportional to the horizontal gradient 

of temperature; 

C: If the pressure difference will be higher in the layer, 

thermal wind becomes more powerful, and finally; 

D: If humid air has more specific humidity, then 

thermal wind will be stronger. 

In this manner; representative of second particular type 

of thermal wind vector, i.e., equation (4-T-II) shows 

that: “thermal wind blows parallel to isotherms, so that, 

warm humid air is located at the right side of downwind 

and cold humid air is located at the left side of 

downwind.” (In the northern hemisphere) This fact is 

illustrated in figures 5 and 6. 
 

 
Figure 5. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and warm 

humid air advection. In the case; 𝑻𝟎 is mean temperature of the 

layer and proportion coefficient 𝒌 is: 

 𝒌 = −(𝟏 + 𝟎. 𝟔𝟎𝟖𝒒)
𝑹𝒅

𝒇
𝐥𝐧 (

𝒑𝟐

𝒑𝟏
) 

 
 

 
Figure 6. Relationship between counterclockwise turning of the 

geostrophic wind with respect to height (backing) and cold 

humid air advection. In the case; 𝑻𝟎 is mean temperature of the 

layer and proportion coefficient 𝒌 is: 

𝒌 = −(𝟏 + 𝟎. 𝟔𝟎𝟖𝒒)
𝑹𝒅

𝒇
𝐥𝐧 (

𝒑𝟐

𝒑𝟏
)  

 

As it is shown in figure 5; in the humid atmosphere with 

constant specific humidity; a geostrophic wind that 

turns clockwise with respect to height (veering) is 

associated with warm humid air advection.   

Conversely, as shown in figure 6; in the above-

mentioned air, counterclockwise turning (backing) of 

the geostrophic wind with respect to height, implies 

cold humid air advection by the geostrophic wind in the 

atmospheric layer. 

Moreover, for second particular type of thermal wind; 

conditions those were mentioned under first particular 

type of thermal wind for obtaining horizontal warm 

humid air advection, cold humid air advection, mean 

temperature field or geostrophic wind at one level of 

the atmospheric layer with humid air, by knowing other 

parameters are true. 

Second particular type of thermal wind vector, i.e., 

equation (4-T-II) has a simple form by integration with 

respect to vertical axis, as following: 
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𝕧TII
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
〈𝕜𝑝 × ∇𝑝𝑇〉 ln (

𝑝2

𝑝1
)  

                     (20-T-II) 
 

Also, equation (20--T-II) can be written in simpler 

form as: 
 

𝕧TII
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓
(𝕜𝑝 × ∇𝑝〈𝑇〉) ln (

𝑝2

𝑝1
)  

            (21-T-II) 
 

where in equations (20-T-II) and (21-T-II), 〈… 〉  is 

vertical averaging of phrase or parameter. 

Analogous to integration of equation (4-T-II); we can 

obtain simple form of equations (5-T-II-a) and              

(5-T-II-b) those show simple forms for components of 

second particular type of thermal wind vector for 

humid air with constant specific humidity; those are: 
 

𝑢TII
= (1 + 0.608𝑞)

𝑅𝑑

𝑓

𝜕〈𝑇〉

𝜕𝑦
ln (

𝑝2

𝑝1
)       (22-T-II-a) 

 

and 
 

𝑣TII
= −(1 + 0.608𝑞)

𝑅𝑑

𝑓

𝜕〈𝑇〉

𝜕𝑥
ln (

𝑝2

𝑝1
)            (22-T-II-b) 

 

Again, in equations (22-T-II-a) and (22-T-II-b), 〈… 〉 is 

vertical averaging of phrase or parameter and 

furthermore, in equation (22-T-II-a) 𝑢TII
 is eastward 

component of thermal wind by second particular type 

and in equation (22-T-II-b) 𝑣TII
 is northward 

component of thermal wind in second particular type. 

There is another method to derive second particular 

type of thermal wind; that at the moment, we don’t refer 

to it. 
 

2.1.1.3 Third particular type of the thermal wind  

In this case; air has humidity but we assume that 

horizontal gradient of vertical average of specific 

humidity in the atmospheric layer may be zero but 

specific humidity varies in vertical direction, so that: 
 

[
𝜕〈𝑞〉

𝜕𝑥
= 0  and  

𝜕〈𝑞〉

𝜕𝑦
= 0]   but  

𝜕𝑞

𝜕𝑝
≠ 0                 (12) 

 

And in this case, atmosphere medium is very similar to 

barotropic medium, where in barotropic medium, we 

have not variation of density in horizontal direction, but 

density can vary in vertical direction. 

In this circumstance; the variation of density in the 

horizontal direction is only related to variation of 

temperature in horizontal direction and causes to 

produce baroclinic atmosphere. In the situation, we 

define the vectorial difference of geostrophic wind 

vector at upper level and geostrophic wind vector at 

lower level of the atmospheric layer as, thermal wind 

again, i.e.: 
 

𝕧T = 𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1)                 (1-T) 

 

And according to definition (1-T); eastward and 

northward components of thermal wind can be shown 

as following: 
 

𝑢T = 𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1)              (2-T-a) 

 

and 
 

𝑣T = 𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1)              (2-T-b) 

 

For deriving all equations related to this case; firstly, 

we consider equations (5-D-II-a) and (5-D-II-b), i.e.: 
 

𝑢DII
=

𝑅𝑑

𝑓
∫

𝜕𝑇v

𝜕𝑦

𝑝2

𝑝1
𝑑 ln 𝑝              (5-D-II-a) 

 

and 
 

𝑣DII
= −

𝑅𝑑

𝑓
∫

𝜕𝑇v

𝜕𝑥

𝑝2

𝑝1
𝑑 ln 𝑝         (5-D-II-b) 

 

and by substituting equivalent of 𝑇𝑣 form equation (6) 

into above-mentioned equations, we get: 
 

𝑢DII
=

𝑅𝑑

𝑓
∫

𝜕

𝜕𝑦

𝑝2

𝑝1
[(1 + 0.608𝑞)𝑇]𝑑 ln 𝑝      (30-D-II-a) 

 

and 
 

𝑣DII
= −

𝑅𝑑

𝑓
∫

𝜕

𝜕𝑥

𝑝2

𝑝1
[(1 + 0.608𝑞)𝑇]𝑑 ln 𝑝   (30-D-II-b) 

 

By applying derivation 
𝜕

𝜕𝑦
 into equation (30-D-II-a), we 

have: 
 

𝑢DII
=

𝑅𝑑

𝑓
{

∫ (0.0608
𝜕𝑞

𝜕𝑦
) 𝑇 𝑑 ln 𝑝

𝑝2

𝑝1
+

∫ (1 + 0.608𝑞)
𝜕𝑇

𝜕𝑦

𝑝2

𝑝1
 𝑑 ln 𝑝

}                 (31) 

 

Calculation of first integral of equation (31) yields: 
 

 (0.0608
𝜕〈𝑞〉

𝜕𝑦
〈𝑇〉) ln (

𝑝2

𝑝1
)     (32) 

And according to conditions (12); 
𝜕〈𝑞〉

𝜕𝑦
 is equal to zero, 

therefore the first integral of equation (31) vanishes and 

equation (31) for eastward component of dense wind, 

reduces to eastward component of third particular type 

of thermal wind, that is: 
 

𝑢TIII
=

𝑅𝑑

𝑓
∫ (1 + 0.608𝑞)

𝜕𝑇

𝜕𝑦

𝑝2

𝑝1
𝑑 ln 𝑝       (5-T-III-a) 

 

where in equation (5-T-III-a), 𝑢TIII
 is eastward 

component of third particular type of thermal wind. 

By applying derivation 
𝜕

𝜕𝑥
 into equation (30-D-II-b) 

and same mathematical manipulation on equation       

(30-D-II-a) into this equation, one can derive 

northward component of third particular type of 

thermal wind, i.e. 
 

𝑣TIII
= −

𝑅𝑑

𝑓
∫ (1 + 0.608𝑞)

𝜕𝑇

𝜕𝑥

𝑝2

𝑝1
𝑑 ln 𝑝       (5-T-III-b) 
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where in equation (5-T-III-b), 𝑣TIII
 is northward 

component of third particular type of thermal wind. 

Equation (5-T-III-a) used definition of third particular 

type of thermal wind, i.e.: 
 

𝑢TIII
≡ 𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1) = ∫ 𝑑𝑢𝑔

𝑝2

𝑝1
         (2-T-III-a) 

 

Substituting of equivalent 𝑢TIII 
, i.e., ∫ 𝑑𝑢𝑔

𝑝2

𝑝1
 from 

equation (2-T-III-a) into equation (5-T-III-a) yields: 
 

∫ 𝑑𝑢𝑔
𝑝2

𝑝1
=

𝑅𝑑

𝑓
∫ (1 + 0.608𝑞)

𝜕𝑇

𝜕𝑦

𝑝2

𝑝1
𝑑 ln 𝑝        (33)   

 

Derivation and rearranging equation (33) have 

following result: 
 

𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅𝑑

𝑓
(1 + 0.608𝑞)

𝜕𝑇

𝜕𝑦
      (19-T-III-a)        

 

By same mathematical manipulation on equation        

(5-T-III-b), one can get equation (19-T-III-b) for 

northward component of third particular thermal wind: 
 

𝜕𝑣𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
(1 + 0.608𝑞)

𝜕𝑇

𝜕𝑥
      (19-T-III-b)   

 

Combining equations (19-T-III-a) and (19-T-III-b) 

yields: 
 

𝜕𝕧𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
(1 + 0.608𝑞)(𝕜𝑝 × ∇𝑝𝑇)          (3-T-III) 

 

Equation (3-T-III) is “Third particular type of thermal 

wind equation” 

Equations (19-T-III-a), (19-T-III-b) and (3-T-III) seem 

to be similar to equations (19-T-II-a), (19-T-II-b) and 

(3-T-II) exactly, but there are different between 

specific humidity for first three above mentioned 

equations with others. In equations (19-T-II-a),          

(19-T-II-b) and (3-T-II) specific humidity, 𝑞 is constant 

whereas in equations (19-T-III-a), (19-T-III-b) and     

(3-T-III); although vertical average of specific 

humidity is same in horizontal direction, i.e.,          
𝜕〈𝑞〉

𝜕𝑥
= 0  and  

𝜕〈𝑞〉

𝜕𝑦
= 0; but, in recent equations,     

𝜕𝑞

𝜕𝑝
≠ 0. 

By integrating of equation (3-T-III) from lower 

pressure level 𝑝1 to upper pressure level 𝑝2, (𝑝2 < 𝑝1) 

of the atmospheric layer; one can derive “Third 

particular type of thermal wind vector” that is: 
 

𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1) ≡ 

𝕧TIII
= −

𝑅𝑑

𝑓
∫ (1 + 0.608𝑞)(𝕜𝑝 × ∇𝑝𝑇)𝑑 ln 𝑝

𝑝2

𝑝1
  

             (4-T-III) 
 

where in equation (4-T-III); 𝕧𝑔(𝑝2) is geostrophic wind 

vector at upper level of the humid atmospheric layer, 

𝕧𝑔(𝑝1) is geostrophic wind vector at lower level of the 

humid atmospheric layer with following specifications: 
 

[
𝜕〈𝑞〉

𝜕𝑥
= 0  and  

𝜕〈𝑞〉

𝜕𝑦
= 0]   but  

𝜕𝑞

𝜕𝑝
≠ 0                 (12) 

and, 𝕧TIII
 stands for third particular type of thermal 

wind vector, 𝑅𝑑 is gas constant for dry air, 𝑓 is Coriolis 

parameter, 𝑝1 is atmospheric pressure at lower level of 

the atmospheric layer, 𝑝2 is atmospheric pressure at 

upper level of the atmospheric layer, 𝑞 is specific 

humidity, 𝕜𝑝 is vertical unit vector in pressure 

coordinates system, ∇𝑝 stands for gradient operator in 

pressure coordinates system, 𝑇 is air temperature and 𝑝 

is atmospheric pressure and vertical axis of pressure 

coordinates system. 

Eastward and northward components of third particular 

type of thermal wind introduced in equations                 

(5-T-III-a) and (5-T-II-b) earlier. 

From third particular type of thermal wind vector or its 

components; one can find out that: 

A: If we go from pole to equator, thermal wind 

becomes stronger (with pay attention to footnote        

No. 7); 

B: If the horizontal gradient of temperature would be 

greater, thermal wind becomes stronger, because 

thermal wind is proportional to the horizontal gradient 

of temperature; 

C: If the pressure difference will be higher in the 

atmospheric layer, thermal wind becomes more 

powerful, and finally; 

D: If Atmospheric layer has more specific humidity and 

specific humidity difference will be higher from below 

level until upper level of the atmospheric layer; then 

thermal wind will be stronger. 

In this manner; representative of third particular type of 

thermal wind vector, i.e., equation (4-T-III) with 

consideration of conditions (12) shows that: “thermal 

wind blows parallel to isotherms, so that, warm humid 

air is located at the right side of downwind and cold 

humid air is located at the left side of downwind.” (In 

the northern hemisphere) This fact is illustrated in 

figures 7 and 8. 
 

 
Figure 7. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and warm 

humid air advection. Conditions are (
𝝏〈𝒒〉

𝝏𝒙
=

𝝏〈𝒒〉

𝝏𝒚
= 𝟎 ≡

𝝏〈𝒒〉

𝝏𝒉
=

𝟎 ∧ 
𝝏𝒒

𝝏𝒑
≠ 𝟎) and in the case; 𝑻𝟎 is mean temperature of the 

layer and proportion coefficient 𝒌 is: 

 𝒌 = −
𝑹𝒅

𝒇
(𝟏 + 𝟎. 𝟔𝟎𝟖〈𝒒〉) 𝐥𝐧 (

𝒑𝟐

𝒑𝟏
) 
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Figure 8. Relationship between counterclockwise turning of the 

geostrophic wind with respect to height (backing) and cold 

humid air advection. Conditions are  (
𝝏〈𝒒〉

𝝏𝒙
=

𝝏〈𝒒〉

𝝏𝒚
= 𝟎 ≡

𝝏〈𝒒〉

𝝏𝒉
=

𝟎 ∧ 
𝝏𝒒

𝝏𝒑
≠ 𝟎) and in the case; 𝑻𝟎 is mean temperature of the 

layer and proportion coefficient 𝒌 is: 

𝒌 = −
𝑹𝒅

𝒇
(𝟏 + 𝟎. 𝟔𝟎𝟖〈𝒒〉) 𝐥𝐧 (

𝒑𝟐

𝒑𝟏
)  

 

As it is shown in figure 7; in the humid atmosphere with 

consideration conditions (12); a geostrophic wind that 

turns clockwise with respect to height (veering) is 

associated with warm humid air advection.   

Conversely, as shown in figure 8; in the above-

mentioned air, counterclockwise turning (backing) of 

the geostrophic wind with respect to height, implies 

cold humid air advection by the geostrophic wind in the 

layer. 

Moreover, for third particular type of thermal wind; 

conditions those were mentioned under first particular 

type of thermal wind for obtaining cold humid air 

advection, warm humid air advection, mean 

temperature field or geostrophic wind at one level of 

the atmospheric layer with humid air considering 

conditions (12), by knowing other parameters are true. 

Third particular type of thermal wind vector, i.e., 

equation (4-T-III) has a simple form when we bring out 

first parenthesis from integrand: 
 

𝕧TIII
= −

𝑅𝑑

𝑓
(1 + 0.608〈𝑞〉) ∫ (𝕜𝑝 × ∇𝑝𝑇)𝑑 ln 𝑝

𝑝2

𝑝1
  

              (20-T-III) 
 

and simpler form as following: 
  

𝕧TIII
= −

𝑅𝑑

𝑓
(1 + 0.608〈𝑞〉)(𝕜𝑝 × ∇𝑝〈𝑇〉) ln (

𝑝2

𝑝1
) 

           (21-T-III) 
 

Also, equations (5-T-III-a) and (5-T-III-b) have simple 

forms as follows: 
 

𝑢TIII
=

𝑅𝑑

𝑓
(1 + 0.608〈𝑞〉) ∫

𝜕𝑇

𝜕𝑦

𝑝2

𝑝1
𝑑 ln 𝑝     (34-T-III-a) 

 

and 
 

𝑣TIII
= −

𝑅𝑑

𝑓
(1 + 0.608〈𝑞〉) ∫

𝜕𝑇

𝜕𝑥

𝑝2

𝑝1
𝑑 ln 𝑝    (34-T-III-b) 

 

Even one can write simpler forms of equations              

(5-T-III-a) and (5-T-III-b) same as following 

equations: 
 

𝑢TIII
=

𝑅𝑑

𝑓
(1 + 0.608〈𝑞〉)

𝜕〈𝑇〉

𝜕𝑦
ln (

𝑝2

𝑝1
)     (22-T-III-a) 

 

and 
 

𝑣TIII
= −

𝑅𝑑

𝑓
(1 + 0.608〈𝑞〉)

𝜕〈𝑇〉

𝜕𝑥
ln (

𝑝2

𝑝1
)      (22-T-III-b) 

 

where in equations (20-T-III), (21-T-III), (34-T-III-a), 

(34-T-III-b), (22-T-III-a) and (22-T-III-b); 〈… 〉 refers 

to vertical average of phrase or parameter. 

There is another method to derive third particular type 

of thermal wind; that at the moment, we don’t refer to 

it. 
  

2.1.2 Thermal wind; Approach by Geopotential 

Now, we may express the thermal wind for a given 

atmospheric layer in terms of the geopotential or 

derivations of it, in the layer. In this case we assume; 

air is dry, has constant humidity or horizontal gradient 

of vertical average of specific humidity is zero. i.e.: 
 

𝑞 = 0         (10) 
 

or 
 

𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡        (11) 
 

or 
 

[
𝜕〈𝑞〉

𝜕𝑥
= 0   and 

𝜕〈𝑞〉

𝜕𝑦
= 0 ]  but  

𝜕𝑞

𝜕𝑝
≠ 0    (12) 

 

We know, these conditions show that the variation of 

density in the horizontal direction is merely related to 

the variation of temperature in horizontal direction 

causing baroclinity of atmosphere, but we don’t refer 

to these conditions in this section. 

Also, approaching thermal wind by geopotential has 

two important types that we propound them. 
 

2.1.2.1 Fourth particular type of the thermal wind  

Geostrophic wind can be introduced by: 
 

𝕧𝑔 = 𝑓−1𝕜𝑝 × ∇𝑝Φ       (13) 

 

Writing eastward and northward components of 

geostrophic wind yields following equations: 
 

𝑢𝑔 = − 
1

𝑓

∂Φ

𝜕𝑦
                (14-a) 

 

and 
 

𝑣𝑔 =   
1

𝑓

∂Φ

𝜕𝑥
                (14-b) 

 

By vertical integrating of equation (14-a) we get: 
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∫ 𝑢𝑔
𝑝2

𝑝1
𝑑𝑝 = − 

1

𝑓
∫

∂Φ

𝜕𝑦

𝑝2

𝑝1
𝑑𝑝       (35) 

 

And by considering figure 2 we have: 
 

𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1) ≡ 

𝑢TIV
= − 

1

𝑓

∂

𝜕𝑦
(Φ2 − Φ1)        (5-T-IV-a) 

 

where in equation (5-T-IV-a), 𝑢TIV
 is eastward 

component of fourth particular type of thermal wind.  

By same mathematical manipulation related to 

equation (14-a) on equation (14-b), one can get: 
 

𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1) ≡ 

𝑣TIV
=  

1

𝑓

∂

𝜕𝑥
(Φ2 − Φ1)                       (5-T-IV-b) 

 

where in equation (5-T-IV-b), 𝑣TIV
 is northward 

component of fourth particular type of thermal wind.  

Combining equations (5-T-IV-a) and (5-T-IV-b) 

yields: 
 

𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1) ≡ 

𝕧TIV
=

1

𝑓
[𝕜𝑝 ×  ∇𝑝(Φ2 − Φ1)]           (4-T-IV) 

 

where in equation (4-T-IV); 𝕧𝑔(𝑝2) is geostrophic wind 

vector at upper level of the atmospheric layer, 𝕧𝑔(𝑝1) is 

geostrophic wind vector at lower level of the 

atmospheric layer, 𝕧TIV
 stands for fourth particular 

type of thermal wind vector, 𝑓 is Coriolis parameter, 𝕜𝑝 

is vertical unit vector in pressure coordinates system, 

∇𝑝 stands for gradient operator in pressure coordinates 

system, Φ2 is geopotential at upper level of the 

atmospheric layer and Φ1 is geopotential at lower level 

of the atmospheric layer.  

The term “geopotential height” refers to height of a 

given point in the atmosphere in units proportional to 

the potential energy of unit mass (geopotential) at this 

height relative to -mean- sea level. [10]  

The relation, in SI units, between the geopotential 

height 𝑍 and geometric height 𝑧 is: 
 

𝑍 =
1

𝑔0
∫ 𝑔𝑑𝑧

𝑧

0
        (36) 

 

where 𝑔 is acceleration of gravity and 𝑔0 is the globally 

averaged acceleration of gravity at sea level             

(𝑔0 = 9.80665 ms−2) so that the two heights are 

numerically interchangeable for most meteorological 

purposes. 

Therefore, for most purposes, it is sufficiently accurate 

to take gravitational acceleration 𝑔 as a constant, given 

approximately by: 
 

𝑔 ≈ 𝑔0 ≈ 9.8 ms−2       (37) 
 

If the sea is at rest, its surface would coincide with the 

geopotential surface8. This geopotential surface is 

                                                                          
8 Or “Base geopotential” 

called -mean- sea level and is defined as Φ = 0. To a 

good approximation, so the vertical coordinate 𝑧 

measures distance upward from this reference level, so 
 

Φ ≈ 𝑔𝑧 ≈ 𝑔0𝑧       (38)  
 

Geopotential is sometimes given in units of the 

geopotential meter (gpm) defined by: 
 

1 gpm = 9.8 m2s−2 ≡ 1 Jkg−1      (39) 
 

so that, the value of the geopotential in geopotential 

meters is close to the height in meters. Alternatively, 

the geopotential height 𝑍 is defined by: 
 

𝑍 = Φ
𝑔0

⁄         (40) 

 

so that the geopotential height in meters is numerically 

the same as the geopotential in geopotential meters. [8] 

Equation (38) shows geopotential is proportional to 

height; then: 
 

(Φ2 − Φ1) ≈ 𝑔(𝑧2 − 𝑧1)      (41) 
 

where in equation (41), Φ2 is geopotential of upper 

level of the atmospheric layer, Φ1 stands for 

geopotential of lower level of the atmospheric layer, 𝑔 

is gravitational acceleration, 𝑧2 is height of upper level 

of the atmospheric layer and 𝑧1stands for height of 

lower level of the atmospheric layer. And (𝑧2 − 𝑧1) is 

the thickness of the layer. (See figure 2)  

Now, from fourth particular type of thermal wind 

vector or its components; one can find out that: 

A: If we go from pole to equator, fourth particular type 

of thermal wind becomes stronger (with pay attention 

to footnote No. 7);  

B: If the horizontal gradient of thickness of the layer 

would be greater, fourth particular type of thermal wind 

becomes stronger, because the thermal wind is 

proportional to the horizontal gradient of thickness of 

the atmospheric layer and: 

C: If the geopotential difference between lower level 

and upper level of the atmospheric layer will be higher, 

thermal wind becomes more powerful. 

In this manner; representative of fourth particular type 

of thermal wind vector, i.e., equation (4-T-IV) with 

consideration of condition (10) shows that: “fourth 

particular type of thermal wind blows parallel to 

isopleth of thickness, so that, more thickness of the 

atmospheric layer is located at the right side of 

downwind and less thickness of the atmospheric layer 

is located at the left side of downwind.” (In the northern 

hemisphere) This fact is illustrated in figures 9 and 10. 
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Figure 9. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and more 

thickness advection. In the case; proportion coefficient 𝒌 is:  

𝒌 =
𝟏

𝒇
 

 
 

 
Figure 10. Relationship between counterclockwise turning of 

the geostrophic wind with respect to height (backing) and less 

thickness advection. In the case; proportion coefficient 𝒌 is:  

𝒌 =
𝟏

𝒇
 

 

As it is shown in figure 9; a geostrophic wind that turns 

clockwise with respect to height (veering) is associated 

with more thickness advection.   Conversely, as shown 

in figure 10; counterclockwise turning (backing) of the 

geostrophic wind with respect to height, implies less 

thickness advection by the geostrophic wind in the 

layer. 

It is therefore possible to obtain a reasonable estimate 

of the mean thickness change of the atmospheric layer 

between two near upper air stations from data on the 

vertical profile of the wind given by soundings at those 

upper air stations. Alternatively, the mean geostrophic 

wind at two points of one level of the atmospheric layer 

between two near upper air stations can be estimated 

from the mean thickness field advection of that layer 

provided that the mean geostrophic wind velocity is 

known at other level.   Thus, for example, if the mean 

geostrophic wind velocity at 850 hPa is known from 

two near upper air stations and the mean gradient of the 

thickness in the layer 850 – 500 hPa between two near 

upper air stations is also known; the fourth particular 

type of thermal wind equation can be applied to obtain 

the mean geostrophic wind velocity in the layer at 500 

hPa. 

 

2.1.2.2 Fifth particular type of the thermal wind  

Consider equations (5-T-IV-a) and (5-T-IV-b): 
 

𝑢TIV
= − 

1

𝑓

∂

𝜕𝑦
(Φ2 − Φ1)        (5-T-IV-a) 

 
 

𝑣TIV
=  

1

𝑓

∂

𝜕𝑥
(Φ2 − Φ1)                        (5-T-IV-b) 

 

If we replace equivalent of (Φ2 − Φ1) from equation 

(41) into above-mentioned equations, we get: 
  

𝑢TV
= − 

𝑔

𝑓

∂

𝜕𝑦
(z2 − z1)         (5-T-V-a) 

 
 

𝑣TV
=  

𝑔

𝑓

∂

𝜕𝑥
(z2 − z1)                        (5-T-V-b) 

 

where in equation (5-T-V-a), 𝑢TV
 is eastward 

component of fifth particular type of thermal wind and 

in equation (5-T-V-b), 𝑣TV
is northward component of 

fifth particular type of thermal wind and other 

parameters have been introduced under equation (41). 

Combining equations (5-T-V-a) and (5-T-V-b) yields 

fifth particular type of thermal wind vector: 
 

𝕧TV
=

𝑔

𝑓
[𝕜𝑝 × ∇𝑝[(𝑧2 − 𝑧1)]]                (4-T-V) 

 

where in equation (4-T-V), 𝕧TV
 stands for fifth 

particular type of thermal wind vector, 𝑔  is 

acceleration of gravity, 𝑓 is Coriolis parameter, 𝕜𝑝 is 

vertical unit vector in pressure coordinates system, ∇𝑝 

stands for gradient operator in pressure coordinates 

system, z2 is altitude of upper level of the atmospheric 

layer and z1  is altitude of lower level of the 

atmospheric layer. 

From fifth particular type of thermal wind vector or its 

components; one can find out that: 

A: If we go from pole to equator, fifth particular type 

of thermal wind becomes stronger (with pay attention 

to footnote No. 7);  

B: If the horizontal gradient of thickness of the layer 

would be greater, fifth particular type of thermal wind 

becomes stronger, because the thermal wind is 

proportional to the horizontal gradient of thickness of 

the atmospheric layer and: 

C: If the altitude difference between lower level and 

upper level of the atmospheric layer will be higher, 

thermal wind becomes more powerful. 

In this manner; representative of fifth particular type of 

thermal wind vector, i.e., equation (4-T-V) shows that: 

“fifth particular type of thermal wind blows parallel to 

isopleth of thickness, so that, more thickness of the 

atmospheric layer is located at the right side of 

downwind and less thickness of the atmospheric layer 

is located at the left side of downwind.” (In the northern 

hemisphere) This fact is illustrated in figures 11 and 12. 
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Figure 11. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and more 

thickness advection. In the case; proportion coefficient 𝒌 is:     

𝒌 =
𝒈

𝒇
 

 
 

 
Figure 12. Relationship between counterclockwise turning of 

the geostrophic wind with respect to height (backing) and less 

thickness advection. In the case; proportion coefficient 𝒌 is:  

𝒌 =
𝒈

𝒇
 

 

As it is shown in figure 11; a geostrophic wind that 

turns clockwise with respect to height (veering) is 

associated with more thickness advection.   

Conversely, as shown in figure 12; counterclockwise 

turning (backing) of the geostrophic wind with respect 

to height, implies less thickness advection by the 

geostrophic wind in the layer. 

Other specifications of fourth particular type of thermal 

wind are true for fifth particular type of thermal wind.  
 

2.2. Second special case of dense wind: Moist wind 

Another feature of dense wind that we introduce it as 

second special case of it, is moist wind. 

If we assume that temperature in horizontal direction 

doesn’t change;9 – as it is true in most regions at tropics 

– i.e. 
 

𝜕𝑇

𝜕𝑥
= 0  and  

𝜕𝑇

𝜕𝑦
= 0       (42) 

 

                                                                          

9 But can change in vertical direction i.e., 
𝜕𝑇

𝜕𝑝
≠ 0 

In conditions No. (42); the variation of density in the 

horizontal direction is merely related to variation of 

humidity in horizontal direction causing baroclinity of 

the atmosphere. In these circumstances; we define the 

vectorial difference of geostrophic wind vector at upper 

level and geostrophic wind vector at lower level of the 

atmospheric layer as, moist wind, i.e.: 
 

𝕧M ≡ 𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1)                (1-M) 

 

where in Equation (1-M) 𝕧M stands for moist wind 

vector, 𝕧𝑔 is geostrophic wind and subscripts 𝑝1 and 𝑝2 

refer to pressure levels in the manner that level 𝑝2 has 

more height than level 𝑝1, i.e., 𝑝2 < 𝑝1. 

According to definition (1-M); eastward and northward 

components of Moist wind can be shown as following: 
 

𝑢M = 𝑢𝑔(𝑝2) − 𝑢𝑔(𝑝1)             (2-M-a) 

 

and 
 

𝑣M = 𝑣𝑔(𝑝2) − 𝑣𝑔(𝑝1)             (2-M-b) 

 

where in equations (2-M-a) and (2-M-b) 𝑢M is eastward 

component of moist wind, 𝑣M is northward component 

of moist wind, 𝑢𝑔 is eastward component of 

geostrophic wind, 𝑣𝑔 is northward component of 

geostrophic wind and subscripts 𝑝1 and 𝑝2 refer to 

pressure levels in the manner that level 𝑝2 has more 

height than level 𝑝1, i.e., 𝑝2 < 𝑝1. 

Also, approaching to derive moist wind equations has 

two branches. 1 – Temperature branch and                          

2 – Geopotential branch. 
 

2.2.1 Moist wind; Approach by Temperature  

For the second version of dense wind; dense wind 

equation was: 
 

𝜕𝕧𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓
(𝕜𝑝 × ∇𝑝𝑇𝑣)            (3-D-II) 

 

If we decompose equation (3-D-II) into its components, 

we get: [1] 
 

𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅𝑑

𝑓

𝜕𝑇v

𝜕𝑦
                 (43-a) 

 

and  
 

𝜕𝑣𝑔

𝜕 ln 𝑝
= −

𝑅𝑑

𝑓

𝜕𝑇v

𝜕𝑥
                 (43-b) 

 

Substituting equivalent of 𝑇𝑣 from equation (6) into 

equation (43-a) yields: 
 

𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅𝑑

𝑓

𝜕(1+0.608𝑞)𝑇

𝜕𝑦
       (44) 

 

and applying derivative on right side of equation (44) 

yields: 
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𝜕𝑢𝑔

𝜕 ln 𝑝
=

𝑅𝑑

𝑓
[

𝜕(1+0.608𝑞)

𝜕𝑦
𝑇 + (1 + 0.608𝑞)

𝜕𝑇

𝜕𝑦
]         (45) 

 

According to conditions (42) 
𝜕𝑇

𝜕𝑦
= 0 and second term 

on the right hand of (45) vanishes. Now we have: 
 

𝜕𝑢𝑔

𝜕 ln 𝑝
= (0.608)

𝑅𝑑𝑇

𝑓
(

𝜕𝑞

𝜕𝑦
)       (19-M-I-a) 

 

By same mathematical manipulation on equation      

(43-b), we have: 
 

𝜕𝑣𝑔

𝜕 ln 𝑝
= −(0.608)

𝑅𝑑𝑇

𝑓
(

𝜕𝑞

𝜕𝑥
)       (19-M-I-b) 

 

Combining equations (19-M-I-a) and (19-M-I-b) 

yields: 
 

𝜕𝕧𝑔

𝜕 ln 𝑝
= −(0.608)

𝑅𝑑𝑇

𝑓
(𝕜𝑝 × ∇𝑝𝑞)           (3-M-I) 

 

Equation (3-M-I) is “First prominent type of moist wind 

equation” 

By integrating of equation (3-M-I) from lower pressure 

level 𝑝1 to upper pressure level 𝑝2, (𝑝2 < 𝑝1) of the 

atmospheric layer (see figure 2); one can derive “First 

prominent type of moist wind vector” that is: 
 

𝕧𝑔(𝑝2) − 𝕧𝑔(𝑝1) ≡ 

𝕧MI
= −(0.608)

𝑅𝑑

𝑓
∫ 𝑇(𝕜𝑝 × ∇𝑝𝑞)𝑑 ln 𝑝

𝑝2

𝑝1
       (4-M-I) 

 

where in equations (19-M-I-a), (19-M-I-b), (3-M-I) and 

(4-M-I): 𝑢𝑔 is eastward component of geostrophic 

wind,  𝑣𝑔 is northward component of geostrophic wind, 

𝕧𝑔 is geostrophic wind, 𝕧MI
stands for first prominent 

type of moist wind, 𝑅𝑑 is gas constant for dry air, 𝑝1 is 

lower pressure of the atmospheric layer, 𝑝2 is upper 

pressure of the atmospheric layer, 𝑇 is temperature, 𝕜𝑝 

is vertical unit vector in pressure coordinates system, 𝑞 

is specific humidity and  𝑝 is pressure as vertical 

coordinate of pressure coordinates system. 

Eastward and northward components of first prominent 

type of moist wind can derive from equation (4-M-I) 

easily. Those are in following lines: 
 

𝑢MI
= (0.608)

𝑅𝑑

𝑓
∫ 𝑇

𝜕𝑞

𝜕𝑦
𝑑 ln 𝑝

𝑝2

𝑝1
        (5-M-I-a) 

 

and: 
 

𝑣MI
= −(0.608)

𝑅𝑑

𝑓
∫ 𝑇

𝜕𝑞

𝜕𝑥
𝑑 ln 𝑝

𝑝2

𝑝1
        (5-M-I-b) 

 

where in equation (5-M-I-a), 𝑢MI
 is eastward 

component of first prominent type of the moist wind 

and in equation (5-M-I-b), 𝑣MI
 stands for northward 

component of first prominent type of the moist wind 

and other parameters were defined after equation         

(4-M-I). 

From first prominent type of moist wind vector or its 

components; one can find out that: 

A: If we go from pole to equator, moist wind becomes 

stronger (with pay attention to footnote No. 7); 

B: Increasing temperature causes to produce power-up 

of moist wind; 

C: If the horizontal gradient of specific humidity would 

be greater, moist wind becomes stronger, because 

moist wind is proportional to the horizontal gradient of 

specific humidity and finally; 

D: If the pressure difference will be higher in the 

atmospheric layer, moist wind becomes more powerful. 

In this manner; representative of first prominent type of 

moist wind vector, i.e., equation (4-M-I) with 

consideration of conditions (42) shows that: “moist 

wind blows parallel to isopleths of specific humidity, so 

that, air with more specific humidity is located at the 

right side of downwind and air with less specific 

humidity is located at the left side of downwind.” (In 

the northern hemisphere) This fact is illustrated in 

figures 13 and 14. 
 

 
Figure 13. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and more 

specific humidity advection. Conditions: 𝒒𝟎 is mean specific 

humidity of the atmospheric layer and in the case; proportion 

coefficient 𝒌 is: 𝒌 = −(𝟎. 𝟔𝟎𝟖)
𝑹𝒅

𝒇
〈𝑻〉 𝐥𝐧 (

𝒑𝟐

𝒑𝟏
) 

 
 

 
Figure 14. Relationship between counterclockwise turning of 

the geostrophic wind with respect to height (backing) and less 

specific humidity advection. Conditions: 𝒒𝟎 is mean specific 

humidity of the atmospheric layer and in the case; proportion 

coefficient 𝒌 is: 𝒌 = −(𝟎. 𝟔𝟎𝟖)
𝑹𝒅

𝒇
〈𝑻〉 𝐥𝐧 (

𝒑𝟐

𝒑𝟏
) 

 

As it is shown in figure 13; in the humid atmosphere 

with consideration condition (42) – in the isothermal 

atmosphere in which, the horizontal gradient of 
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temperature would be zero –; a geostrophic wind that 

turns clockwise with respect to height (veering) is 

associated with more specific humidity advection.   

Conversely, as shown in figure 14; in the above-

mentioned air, counterclockwise turning (backing) of 

the geostrophic wind with respect to height, implies 

less specific humidity advection by the geostrophic 

wind in the layer. 

It is therefore possible to obtain a reasonable estimate 

of the mean specific humidity advection of the 

atmospheric layer between two near upper air stations 

from data on the vertical profile of the wind given by 

soundings at those upper air stations. Alternatively, the 

mean geostrophic wind at two points of one level of the 

atmospheric layer between two near upper air stations 

can be estimated from the mean field of specific 

humidity advection of that layer provided that the mean 

geostrophic wind velocity is known at other level.   

Thus, for example, if the mean geostrophic wind 

velocity at 850 hPa is known from two near upper air 

stations and the mean specific humidity advection in 

the layer 850 – 500 hPa between two near upper air 

stations is also known; the first prominent type of the 

moist wind equation can be applied to obtain the mean 

geostrophic wind velocity in the layer at 500 hPa. 

First prominent type of moist wind vector, i.e., equation 

(4-M-I) has a simple form by integration with respect 

to vertical axis, as following: 
 

𝕧MI
= −(0.608)

𝑅𝑑

𝑓
〈𝑇〉(𝕜𝑝 × ∇𝑝〈𝑞〉) ln (

𝑝2

𝑝1
)  (21-M-I) 

 

where in equation (21-M-I), 〈… 〉 is vertical averaging 

of phrase or parameter. 

Analogous to simplification of equation (4-M-I); we 

can obtain simple form of equations (5-M-I-a) and              

(5-M-I-b) those show simple forms for components of 

first prominent type of moist wind vector for humid air 

with conditions (42); those are: 
 

𝑢MI
= (0.608)

𝑅𝑑

𝑓
〈𝑇〉

𝜕〈𝑞〉

𝜕𝑦
ln (

𝑝2

𝑝1
)      (22-M-I-a) 

 

and: 
 

𝑣MI
= −(0.608)

𝑅𝑑

𝑓
〈𝑇〉

𝜕〈𝑞〉

𝜕𝑥
ln (

𝑝2

𝑝1
)      (22-M-I-b) 

 

Again, in equations (22-M-I-a) and (22-M-I-b), 〈… 〉 is 

vertical averaging of phrase or parameter and 

furthermore, in equation (22-M-I-a) 𝑢MI
 is eastward 

component of moist wind by first prominent type and 

in equation (22-M-I-b) 𝑣MI
 is northward component of 

moist wind in first prominent type. 
 

2.2.2. Moist wind; Approach by Geopotential  

Conditions (42) is opposite to conditions (10), (11) and 

(12).  

By considering conditions (12); if we apply the same 

process to derive equation (4-T-IV) here plus bearing 

in mind conditions (42); we get the other form of moist 

wind vector named second prominent type of moist 

wind, as we got in the case of dense wind i.e.: 
 

𝕧MII
=

1

𝑓
𝕜𝑝 × ∇𝑝(Φ2 − Φ1)           (4-M-II) 

 

where in equation (4-M-II); 𝕧MII
 stands for second 

prominent type of moist wind vector, 𝑓 is Coriolis 

parameter, 𝕜𝑝 is vertical unit vector in pressure 

coordinates system, ∇𝑝 stands for gradient operator in 

pressure coordinates system, Φ2 is geopotential at 

upper level of the atmospheric layer and Φ1 is 

geopotential at lower level of the atmospheric layer.  

Equation (4-M-II) is another version of the moist wind 

and states that: second prominent type of moist wind is 

proportional to horizontal gradient of the thickness of 

the layer and this subject is true if the variation of the 

thickness of the layer would produce only with the 

horizontal gradient of specific humidity. 

From equation (4-M-II) we can derive eastward and 

northward components of second prominent type of 

moist wind easily: 
 

𝑢MII
= −

1

𝑓

∂

𝜕𝑦
(Φ2 − Φ1)        (5-M-II-a) 

 
 

𝑣MII
=

1

𝑓

∂

𝜕𝑥
(Φ2 − Φ1)         (5-M-II-b) 

 

where in equation (5-M-II-a), 𝑢MII
 is eastward 

component of second prominent type of the moist wind 

and 𝑣MII
 is northward component of second prominent 

type of moist wind. 

From second prominent type of moist wind vector or 

its components; one can find out that: 

A: If we go from pole to equator, second prominent 

type of moist wind becomes stronger (with pay 

attention to footnote No. 7);  

B: If the horizontal gradient of thickness of the layer 

would be greater, second prominent type of moist wind 

becomes stronger, because the moist wind is 

proportional to the horizontal gradient of thickness of 

the atmospheric layer and: 

C: If the geopotential difference between lower level 

and upper level of the atmospheric layer will be higher, 

moist wind becomes more powerful. 

In this manner; representative of second prominent 

type of moist wind vector, i.e., equation (4-M-II) with 

consideration of condition (42) shows that: “second 

prominent type of moist wind blows parallel to isopleth 

of thickness, so that, more thickness of the atmospheric 

layer is located at the right side of downwind and less 

thickness of the atmospheric layer is located at the left 

side of downwind.” (In the northern hemisphere) This 

fact is illustrated in figures 15 and 16. 
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Figure 15. Relationship between clockwise turning of the 

geostrophic wind with respect to height (veering) and more 

thickness and more specific humidity advection. In the case; 

proportion coefficient 𝒌 is:  𝒌 =
𝟏

𝒇
 

 
 

 
Figure 16. Relationship between counterclockwise turning of 

the geostrophic wind with respect to height (backing) and less 

thickness and less specific humidity advection. In the case; 

proportion coefficient 𝒌 is:  𝒌 =
𝟏

𝒇
 

 

As it is shown in figure 15; a geostrophic wind that 

turns clockwise with respect to height (veering) is 

associated with more thickness and more specific 

humidity advection.   Conversely, as shown in figure 

16; counterclockwise turning (backing) of the 

geostrophic wind with respect to height, implies less 

thickness and less specific humidity advection by the 

geostrophic wind in the layer. 

It is therefore possible to obtain a reasonable estimate 

of the mean thickness and specific humidity change of 

the atmospheric layer between two near upper air 

stations from data on the vertical profile of the wind 

given by soundings at those upper air stations. 

Alternatively, the mean geostrophic wind at two points 

of one level of the atmospheric layer between two near 

upper air stations can be estimated from the mean 

thickness and specific humidity field advection of that 

layer provided that the mean geostrophic wind velocity 

is known at other level.   Thus, for example, if the mean 

geostrophic wind velocity at 850 hPa is known from 

                                                                          
10 Note that here; we focus on isothermal environment; 

otherwise, the geostrophic wind has no physical meaning at 

equator or the regions near it. Although, the proposition of 

two near upper air stations and the mean gradient of the 

thickness and changes of specific humidity in the layer 

850 – 500 hPa between two near upper air stations are 

also known; the second prominent type of moist wind 

equation can be applied to obtain the mean geostrophic 

wind velocity in the layer at 500 hPa. 

Therefore; the moist wind equation is an extremely 

useful diagnostic tool, which can use to check analyses 

of the observed wind and specific humidity fields for 

consistency; in the regions – same tropics – that 

environment is extremely isothermal10. 
 

3. Attention for similarities  
There are some similarities in this work. 

You realize that formulae (4-D-III), (4-T-IV) and        

(4-M-II) are alike. 

Although, figure 9 – related to formula (4-T-IV) –, 

figure 15 – related to formula (4-M-II) – and figure 

related to formula (4-D-III) – that introduced in part I 

of this research – are alike. 

Furthermore, figure 10 – related to formula (4-T-IV) – 

figure 16 – related to formula (4-M-II) – and figure 

related to formula (4-D-III) – that introduced in part I 

of this research – are alike. 

Despite of above-mentioned similarities; there are 

basic discrepancies between them that will be explain 

in following paragraphs. 

Formula (4-D-III) and related figures about it – those 

were presented in part I of this research –, were arisen 

from baroclinic weather that baroclinity of it, is related 

to both horizontal gradient of temperature and 

horizontal gradient of humidity. 

Formula (4-T-IV), figure 9 and figure 10 were arisen 

from baroclinic weather that baroclinity of it, is related 

to horizontal gradient of temperature solely. 

And formula (4-M-II) and figures 15 and 16 were 

arisen from baroclinic weather that baroclinity of it, 

were arisen from horizontal gradient of specific 

humidity solely. 

Therefore; although – in above-mentioned formulae 

and figures –, there are similarities apparently; but in 

interior of them, there are striking differences between 

them. 
 

4. Results and Discussion  
All versions of dense wind equations, thermal wind 

equations and moist wind equations; are an extremely 

useful diagnostic tools, which is often used to check 

analyses of the observed wind field for consistency. 

The proposition of dense wind, thermal wind and moist 

wind, those are propounded for the first time with these 

kind configurations; can help to better understanding of 

atmosphere dynamics. Furthermore, knowing the 

moist wind is valid there, and that is vectorial difference 

between wind in the vertical direction with some difference. 
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advection of the warm air, cold air, moist air, dry air or 

thickness of the atmospheric layer with exclusive 

specifications; can help to improve weather 

forecasting. Although, we referred to the variation of 

the geostrophic wind with respect to height here; but 

this proposition is valid for the variation of real wind in 

vertical direction with some modifications that needs 

separate discussion. 

Thermal wind, moist wind or – as exist in the nature of 

the whole atmosphere – except somewhere that thermal 

or moist wind is true – dense wind; is struggle of the 

atmosphere to return thermodynamic equilibrium and 

complete the dynamic cycle of atmosphere. 
As we noticed in part I of the research; this movement 

begins from the fact that solar radiation disturbs the 

thermodynamic equilibrium, resulting production of 

horizontal gradient of density. Horizontal gradient of 

density produces horizontal gradient of potential 

energy and in turn, this condition forces atmosphere to 

generate horizontal gradient of pressure gradian force 

and finally, it causes blow wind, for returning 

thermodynamic equilibrium of the atmosphere. 

Due to various incoming solar radiation and non-

uniform transfer of heat flux and humidity flux  and 

diffusion of them from below of different layers of the 

atmosphere; atmosphere will be baroclinic and 

horizontal gradients of density are not same in the 

layers and wind velocities can’t be the same at all 

atmospheric layers i.e., vertical shear of the wind. 

Therefore, this phenomenon produces dense wind that 

is effort of atmosphere to return into its thermodynamic 

equilibrium and reducing dense wind speed. By 

continuous reduction of dense wind speed, 

thermodynamic disequilibrium of atmosphere weakens 

and weakens, until reaching of thermodynamic 

equilibrium of the atmosphere. If we assume there will 

be no more solar radiation, finally the wind will be 

disappeared in presence of friction. 

So, dense wind is the key of understanding for dense or 

light air, virtual temperature or thickness of the 

atmospheric layer advections and is one of the 

mechanisms of returning thermodynamic equilibrium 

of atmosphere. 

And the same conditions are true for thermal wind and 

moist wind under their own situations.  
 

5. Conclusions 
This point is important that scale analysis can 

determine at which region the moist wind governs 

rather than thermal wind and vise-versa and where we 

can’t apply any of them and we ought to use dense 

wind. Perhaps, this is the best result from the point that: 

Looking at the variation of the geostrophic wind with 

respect to height – in general –, shouldn’t limit to dry 

atmosphere and we expect only one form of thermal 

wind from this process, because atmosphere has 

humidity; as well as we shouldn’t conclude moist wind 

from it, because – in general – atmosphere is not 

isothermal; because in general the air is not dry, as 

well as it is not isothermal in horizontal direction 

therefore, the variation of the geostrophic wind with 

respect to height should be describe with better tool, 

namely dense wind. 

Also, we have noticed in part I of this research; “It is 

necessary to note two basic points. First; until God 

wills and sun radiates; atmospheric and oceanic 

mediums are baroclinic. And the theory of barotropic 

medium – same as geostrophic wind – is acceptable for 

simplification of meteorological and oceanic analyses. 

Second point is with regard to more affection of 

temperature in variation of air density; although in 

many places far from oceanic medium, the dense wind 

gains energy more from horizontal gradient of 

temperature rather than the horizontal gradient of 

humidity, but it is not sufficient reason to call the 

vectorial difference of the geostrophic wind at upper 

and lower level of the atmospheric layer as thermal 

wind, because we can’t deny presence of humidity 

anywhere.” 
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