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The tropical Indian Ocean forms the major part of the largest warm pool on 

Earth, and its interaction with the atmosphere plays an important role in 

shaping climate on both regional and global scales. Three dimensional 

temperature fields are calculated analytically for an ocean forced by wind 

stress and surface heat flux. A basic thermal state involving a balance of 

lateral and vertical heat diffusion is assumed.  An effect of nonlinear heat 

advection is calculated by a perturbation method. The zero order temperature 

fields give a rough overall representation of oceanic thermocline. Associated 

with this field there is a baroclinic eastward flow in the upper part, with a 

westward return flow below. The interior temperature field to the next order is 

affected not only by interior heat advection but by heat advection in the 

Ekman layer, in the up and down welling layers and in the main western 

boundary current. For solving equations we use perturbation method. All 

equations are written in spherical coordinate and then compare with results in 

Cartesian coordinate  
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1. Introduction
Modeling studies in the Indian Ocean are not as

extensive as other oceans in the world. Nevertheless,

our current understanding of the dynamics of the

North Indian Ocean is largely achieved by numerical

models (Shankar, Vinay-Chandran, & Unnikrishnan,

2002). Due to increased interest in Indian Ocean

dynamics and its complex circulation compared to

other oceans, the study of this ocean has increased in

the past decade [1]. The main efforts were made by

Scott and McCarey in 2001 and Shankar in 2002.

In 2001, Schott and McCreary explored and

interpreted trends in currents at Monsoon's time. In

fact, there was a review of the results of observations,

theoretical estimates and modeling in the region by

others in the context of the reciprocal seasonal flows

in southern India, Sri Lanka, and the eastern and

central parts of the Arabian Sea [2].

In 2002, Shankar and his colleagues studied the

pattern of water flow in the Indian Ocean at the time

of Monsoon using a general ocean circulation scheme,

and found that seasonal changes in the north of the

ocean had regular ups and downs. The flows in the

Oman Sea and the Persian Gulf region are not well

simulated, and a complete explanation is not provided 

in the article [3]. 

 In 2009, Frederick and colleagues presented an article 

on Indian Ocean Fluctuation and climate change, 

pointing out that the effects of the Indian Ocean on 

climate change were more than expected. In the article 

reviews climate phenomena and processes in which 

the IO is, or appears to be, actively involved. They 

began with an update of the IO mean circulation and 

monsoon system. It is followed by reviews of 

ocean/atmosphere phenomenon at intraseasonal, 

interannual, and longer time scales. Much of their 

review addresses the two important types of 

interannual variability in the IO, El Nin ̃o–Southern 

Oscillation (ENSO) and the recently identified Indian 

Ocean Dipole (IOD) [4].  

In 2014, Muni Krishna and his colleagues studied 

tropical Indian Ocean surface and subsurface 

temperature fluctuations in a climate change scenario 

and its significant impact on Indian monsoon. 

Tropical Indian Ocean temperature plays a vital on 

Indian monsoon system and also cyclone genesis. The 

feature and evolution mechanisms of the tropical 

Indian Ocean temperature between pre warming and 

warming period and also during Indian Ocean Dipole 
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(IOD) events that co-occurred with El Niño are 

studied using Simple Ocean Data Assimilation 

(SODA) data set. The southeastern Arabian Sea, 

Western Arabian Sea and Seychelles Chaogos 

Thermocline Ridge regions subsurface temperature 

anomalies are cooled and the southern gyre, south Bay 

of Bengal, off java regions show warming trend from 

surface to subsurface [5].  

As a mentioned, in most of later experiments, the 

temptation is to improve oceanic investigation by 

numerical models by bringing in new effects, such as 

nonlinear equation of state, etc. The repetitions of 

experiments over a range of parameter values which 

give a better insight into the nature of simpler 

problem, is often neglected. Thus, there seem to be 

some gaps in our basic theoretical knowledge which 

need to be filled, by a combination of analytical 

theory and relatively simple numerical models [12]. 

The problems studied here involve the calculation of 

the three dimensional temperature and in a bounded, 

rectangular ocean on the real earth, forced by a 

meridionally varying wind stress and surface heat 

flux. The motion and driving forces are taken to be 

independent of time. After averaging the equations of 

motion, the Reynold stresses are defined.  

At the solid boundaries, the normal, baroclinic, 

vertically averaged flow must vanish; hence, 

boundary layers must form. Actually, this circulation 

is closed principally through thin upwelling and 

downwelling layers next to the walls. The zero order 

temperature fields gives a rough overall representation 

of oceanic thermocline. The first order calculation of 

temperature includes not only the advective effects of 

the interior flow, but equally important effects of 

thermal advection in the Ekman surface layer and in 

the barotropic and baroclinic side layers. All equations 

are written in spherical coordinate and then compare 

with results in Cartesian coordinate. 

2- Data and method
2-1. Basic equations:

Consider a rectangular oceanic basin in spherical

coordinate (Fig.1) and then compare results in

Cartesian coordinate.

 Figure1. Geometry of studied basin in spherical coordinate. 

The upper boundary is taken horizontally, r=R, using 

the so-called rigid–lid, and the horizontal bottom is 

placed at r=R-H.  

At the upper boundary a zonal wind stress and a 

normal heat flux (counted positive when directed 

upward) are applied, i.e.:  

τλ = −τ0φsin(kπφ), (1)

Q = −Q0cos
π

2
φ (2)

In Cartesian coordinate 𝜑 =
𝑦

𝑅
and in spherical 

coordinate indicates zonal boundaries in radian. The 

stress and heat flux are defined as kinematical values 

(stress divided by density, heat flux divided by heat 

capacity per unit volume), making their dimensions 

equal to a velocity square and temperature-time 

velocity, respectively. 

The depth H is assumed small compared to the 

planetary scale R (R ≫ H), justifying the hydrostatic 

balance equation. At the meridional walls, λ=0, 1, it is 

required that the horizontal velocity and the normal 

heat flux vanish, while the total velocity and the 

vertical heat flux vanish at the bottom. At the top the 

vertical velocity vanishes, while the momentum flux 

and heat flux are specified according to the boundary 

conditions (1), (2).  

The density variations are assumed small enough to 

allow the Boussinesq approximation to be valid. In the 

present formulation, the thermohaline forcing is due 

entirely to surface heating, but it is possible to include 

a specified normal flux of salinity S at the surface, 

giving the effect of evaporation-precipitation 

processes. If the diffusion coefficient for heat and salt 

are the same, as is expected to be true when molecular 

effects are negligible.  It is assumed that the turbulent 

friction and heat diffusion can be described by use of 

constant eddy coefficients, and that the turbulence is 

horizontally isotropic, allowing the use of only one 

coefficient in the horizontal plane. Fluxes due to 

molecular diffusion are considered negligible relative 

to the turbulent eddy fluxes. 

In accordance with the above description of the 

problem, the following equations can be written, 

expressing the horizontal momentum balance, 

hydrostatic balance, incompressibility, and heat flux 

divergence balance, respectively: 

λ direction:   ρ (
Du

Dt
−
uvtanφ

R
− 2Ωsinφv

+ 2Ωcosφw) = −
1

Rcosφ

∂p

∂λ

(3) 

ϕ direction:   ρ (
Dv

Dt
+
u2tanφ

R
+ 2Ωsinφu)

=
1

R

∂p

∂φ

(4) 
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r direction:  
∂p

∂z
≅ gαT (5) 

1

R2
∂

∂z
(R2w) +

1

Rcosφ

∂

∂φ
(vcosφ) +

1

Rcosφ

∂u

∂λ
= 0 

(6) 

Where   
D

Dt
=

∂

∂t
+w

∂

∂Z
+

v

R

∂

∂φ
+

u

Rcosφ

∂

∂λ
(7) 

The dependent variables are prescribed such that u,v, 

and w are the velocity components in the λ, ∅, and r 

directions, P states the pressure, ρ denotes the density, 

T is the temperature, and g denotes the acceleration of 

gravity. 

After using derivation of stress tensor and Prandtl’s 

Mixing-Length theory and imposing rules of operating 

on mean time-averaged and some simplifications, the 

results for momentum balance are: 

ρ0 (
Du

Dt
−
uvtanφ

R
− 2Ωsinφv − 2Ωcosφw)

= −
1

Rcosφ

∂p

∂λ
+ 

AH (∇H
2U −

1

R2
(
∂U

∂φ
+

1

Rcosφ

∂V

∂λ
) tanφ)

+ Av(
∂2U

∂z2
) 

(8) 

ρ0 (
Dv

Dt
+
u2tanφ

R
+ 2Ωsinφu) =

1

R

∂p

∂φ
+ 

AH (∇H
2V + (

1

R2cosφ

∂V

∂λ
+
1

R

∂w

∂z
) tanφ)

+ Av (
∂2V

∂z2
) 

(9) 

∂p

∂z
≅ gαT (10) 

∂w

∂z
+

1

Rcosφ

∂vcosφ

∂φ
+

1

Rcosφ

∂u

∂λ
= 0 (11) 

And heat balance: 

DT

Dt
=  AH∇H

2T + Av
∂2T

∂z2
(12) 

∇2=
1

Rcosφ

∂

∂φ
(cosφ

∂

∂φ
) +

1

R2cos2φ
(
∂

∂λ
) (13) 

Boundary conditions become: 

AV
∂U

∂z
= τλ(φ), AV

∂T

∂z
= −Q(φ),

at  z = 0 
(14-1) 

∂V

∂z
= w = 0  at  z = 0 (14-2) 

U = V = w =
∂T

∂z
= 0     at   z = −H (14-3) 

U = V =
1

Rcosφ

∂T

∂λ
= 0    at λ = 0,1 

(14-4) 

1

R

∂U

∂φ
= V =

1

R

∂T

∂φ
= 0     at φ = 0 ,1          (14-5) 

2.1. Non-dimensionalization and expansion: 

The following transformation to non-dimension 

variables is introduced: 

(
U

V
) = Ut (

U′

V′
) ,W =

UtD

R
.W′ 

Z = DZ′

P = f0UtR. P,  T = ∆T. T
′ }

(15) 

The scale depth D (thermocline depth) is set by 

balancing the horizontal and vertical heat diffusion, 

assuming the same typical temperature variation, in 

both directions. The thermal boundary condition and 

the thermal wind relation then determines the 

amplitudes ∆T and Ut. The relations take the form:

AH
∆T

R2
= AV

∆T

D2
⇒ D = √

AV
AH

R (16) 

Q0 = AV
∆T

D
⇒ ∆T =

DQ0
AV

=
RQ0

(AHAV)
1
2⁄

(17) 

f0Ut
D

=
gα∆T

R
⇒ Ut =

gαR

AHf
(18) 

The non-dimensionalized equations take the 

corresponding form in spherical coordinate: 

R0 (
U

COSφ

∂U

∂λ
+ V

∂U

∂λ
+W

∂U

∂Z
− UVtanφ)

− Vsinφ +
DW

R
cosφ = 

E∇2U− E(
∂U

∂φ
+

1

COSφ

∂V

∂λ
) tanφ −

1

COSφ

∂P

∂λ

(19) 

R0 (
U

COSφ

∂V

∂λ
+ V

∂V

∂φ
+W

∂V

∂Z
+ U2tanφ)

+ Usinφ =

E(∇2V+ (
2

COSφ

∂V

∂λ
) tanφ −

∂P

∂φ

(20) 

∂P

∂Z
≅ T (21) 

∂W

∂Z
+

1

COSφ

∂V

∂φ
COSφ+

1

COSφ

∂U

∂λ
= 0 (22) 

R0 (
U

COSφ

∂T

∂λ
+ V

∂T

∂φ
+W

∂T

∂Z
) = E(∇2T) (23) 

Where the nondimensional numbers appearing in 

these equations are: 

(9) (10) 
(11) 

(13) 

(14-4) (14-5) 
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R0 =
Ut
Rf0

=
gα

AHf0
2 (24) 

E =
AH
f0R

2
=

AV
f0D

2 (25) 

σ =
τ0f0
gα

(
AH
AV
)

1
2⁄

[ratio of wind forcing to thermal forcing] 
(26) 

δ =
D

H

= (
 AV
AH
)

1
2⁄ R

H
 [relative thermocline depth] 

(27) 

The Rossby and Ekman numbers defined above are 

very small for the real oceans, and it seems natural to 

try to find a solution in terms of a series developed 

from these. Using  R0E
−1 as the expansion parameter,

we can write like the following series approximations: 

T = T0 + R0E
−1T1 + (R0E

−1)2T2 +⋯, (28) 

This makes the zero-order thermal balance diffusive. 

The nonlinear heat advection appears in the first order 

correction, while the dynamics remain linear. 

We can rewrite σ as bellow: 

σ =
τ0f0
gα

(
AH
AV
)

1
2⁄

=
τ0f0
gα

R

D
=

τf0R
2

AHf0DUtR

=
τ

f0DUt

AH
f0R

=
τ f0⁄

DUt
E−1

(29) 

σ∗ =
τ f0⁄

DUt

(30) 

The number σ∗ gives the ratio of the Ekman wind drift

to the thermal wind transport over the thermocline 

depth. Under the above assumption the zero-order 

problem is described by: 

−V0sinφ +
DW0

R
cosφ

= E(∇2U0

− (
∂V0
∂φ

+
1

COSφ

∂V0
∂λ
) tanφ)

−
1

COSφ

∂P0
∂λ

(31) 

U0sinφ = E(∇
2V0 + (

2

COSφ

∂U0
∂λ
) tanφ) −

∂P0
∂φ

 (32) 

∂P0
∂Z

≅ T0 (33) 

∂W0

∂Z
+

1

COSφ

∂(V0cosφ)

∂φ
+

1

COSφ

∂U0
∂λ

= 0 (34) 

∇2T0 ≅ 0 (35) 

With the nonhomogeneous boundary conditions: 

E
∂U0

∂Z
= σ∗φsinπφ (36) 

∂T0
∂Z

= cos
πφ

2

(37) 

Both prescribed at z=0, and with homogeneous 

boundary conditions: 

U0 = V0 = W0 =
∂T0
∂Z

= 0    at  z = −
H

D
= −

1

δ
(38) 

U0 = V0 =
1

RCOSφ

∂T0
∂λ

= 0   at λ = 0, 1 (39) 

1

R

∂U0
∂φ

= V0 =
1

R

∂T0
∂φ

= 0  at φ = 0,1 (40) 

W0 =
∂V0
∂Z

= 0  at  z = 0 (41) 

3. Results
3.1. The zero order solution for temperature

The solution to the heat diffusion equation with the

top boundary conditions is independent of λ. We can

write:

∂2T0
∂Z2

+
1

cosϕ

∂

∂ϕ
(cosϕ

∂T0
∂φ

) = 0 (42) 

With boundary condition: 

∂T0
∂Z

= cos
π

2
φ  at  Z = 0 

∂T0
∂φ

= 0  at  φ = 0,1 

∂T0
∂Z

= 0  at  z = −
H

D
= −

1

δ

(43) 

The solution becomes: 

T0 = cos
πϕ

2
.
cosh

π

2
 (Z +

1

δ
)

π

2
sinh (

π

2δ
)

+∑ ∑ c0(n,m)

∞

m≠1

∞

n=1

cos (π

−
1

2
)πφ cos(m − 1)πδZ 

(44) 

The first term in the solution is because of, 

horizontally the solution varies as cos
πϕ

2
; hence the

vertical variation is of the form Aeπz 2⁄ + Be−πz 2⁄ ;

second term is a summation which is due to the 

assumed spheroid of the earth’s surface vs. c0(n,m)
are obtained by substituting (16)  into (42), Fourier 

decomposing the equation in the ϕ and Z directions 

(37) 
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and solving the resultant relations for c0(n,m). The

T0 solution is depicted in Fig. 2.

Figure 2- The  𝐓𝟎 field in a meridional section (solid and dash

lines indicate spherical and ß plane coordinate results). 

3.2. The first-order temperature: 

The first order correction T1 to the temperature field

satisfies below equation.  

∇2𝑇1 =
𝑢0
𝑐𝑜𝑠∅

𝜕𝑇0
𝜕𝜆

+𝑉0
𝜕𝑇0
𝜕∅

+ 𝑤0
∂T0
∂z

(45) 

Since T0 is independent of λ this equation takes on the

simpler form: 

∂2T1
∂Z2

+
1

cosϕ

∂

∂ϕ
(cosϕ

∂T1
∂φ
) +

1

cos2∅

∂2T1
∂λ2

= V0
∂T0
∂φ

+W0

∂T0
∂z

(46) 

With the right-hand side a function of z and ϕ only. 

The boundary conditions are homogeneous, i.e., 

∂T1
∂Z

= 0  at  z = 0   and z = −
1

δ
∂T1
∂λ

= 0  at  λ = 0 and  λ = 1 

∂T1
∂φ

= 0  at  φ = 0,1 

For better understanding, we suppose the total 

problem as the sum of four sub-problems: 

T1 = T11 + T12 + T13 + T14 (47) 

1. ∇2T11 = V0
∂T0
∂∅

+ w0
∂T0
∂z (48) 

And all boundary conditions are homogeneous. This 

solution reflects the effect of the interior solution. 

2. ∇2T12 = 0 (49) 

∂T1
∂z

= σ∗
∅𝑠𝑖𝑛𝑘𝜋∅

𝑠𝑖𝑛∅

𝜕𝑇0
𝜕∅

 𝑎𝑡   𝑧 = 0 (50) 

With the boundary condition (50) and other 

homogeneous conditions, T12 indicates the effect of

the Ekman layer advection. 

(51)3. ∇2𝑇13 = 0

With the boundary condition 

∂T13
∂λ

= σ∗δ∑∑B(n,m) cos (n

−
1

2
)π∅ cos(m

− 1)πδz     at    λ = 0

(52) 

and other conditions are homogeneous. T13 reflects

the effect of western boundary current advection. 

4. ∇2𝑇14 = 0 (53) 

With the condition: 

∂T14
∂λ

=∑∑D(n,m) cos (n −
1

2
)π∅co s(m

− 1)πδz  at  λ = 0 and  λ
= 1

(54) 

and other conditions are homogeneous. T14 indicates

the effect of baroclinic upwelling and downwelling 

near λ = 0 and  1 . 

3.2.1. Interior Solution 

The interior advection solution T11 has forcing which

is independent of λ and the governing equation can be 

written as: 

∂2T11
∂Z2

+
1

cosϕ

∂

∂ϕ
(cosϕ

∂T11
∂φ

)

= V0
∂T0
∂φ

+W0

∂T0
∂z

(55) 

Where T0, V0 and W0are define as equation (16) and

(56) respectively.

𝑉0 = 𝜎
∗(

1

𝑐𝑜𝑠𝜑
(𝑠𝑖𝑛𝑘𝜋𝜑 + 𝑘𝜋𝜑 𝑐𝑜𝑠𝑘𝜋𝜑

−
𝜑𝑠𝑖𝑛𝑘𝜋𝜑

𝑐𝑜𝑠2𝜑𝑠𝑖𝑛𝜑
))𝛿 

𝑊0 = 𝜎
∗(

1

𝑠𝑖𝑛𝜑
(𝑠𝑖𝑛𝑘𝜋𝜑 + 𝑘𝜋𝜑 𝑐𝑜𝑠𝑘𝜋𝜑

−
𝜑𝑠𝑖𝑛𝑘𝜋𝜑

𝑠𝑖𝑛2𝜑𝑐𝑜𝑠𝜑
))(1 + 𝛿𝑧)𝛿 

(56) 

The solution to equation (55) is: 
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T11 = σ
∗δ∑ ∑ c11(n,m)

∞

m=1

∞

n=1

cos (n

−
1

2
)πφ cos[(m − 1)πδZ] 

(57) 

By substituting equation (57) into equation (55), 

Fourier decomposing in the ∅ and Z directions and 

solving the resulting equations, c11(n,m) are

obtained. According to equation (55), the nonlinear 

interior temperature advection to first order is due to 

the meridional and vertical (barotropic) motions. 

Fig3a indicates the meridional temperature advection 

and Fig 3b shows the vertical temperature advection 

in the interior, i.e. the right hand side of equation (55). 

 
Figure 3. The interior forcing functions of 𝐓𝟏𝟏 field in a

meridional section: (a) Meridional advection, (b) Vertical 

advection,(c) total (meridional plus vertical advection) 

3-2-2-Ekman advection

Next consider the Ekman transport induced

temperature T12.  The non-homogeneous boundary

condition at Z=0 is independent of λ; the governing 

equation is as follows:  

∂2T12
∂Z2

+
1

cosϕ

∂

∂ϕ
(cosϕ

∂T12
∂φ

) = 0 (58) 

With the homogeneous and below boundary 

conditions: 

∂T12
∂Z

= σ∗∑An cos (n −
1

2
)π∅ 

at  Z = 0 
(59) 

The solution to equation (50) is: 

T12 = σ
∗ (
δz2

2
+ z)∑An cos (n −

1

2
)π∅ 

+σ∗∑∑c12 (n,m) cos (n

−
1

2
)π∅cos (m− 1)πδz 

(60) 

The coefficients c12(n,m) are obtained by

substituting equation (60) into (58), by invoking the 

orthogonally property of cos (n −
1

2
)π∅ and cos (m−

1)πδz and by solving the resulting equations for

c12(n,m).

Figure4. Forcing function at the top Ekman layer. 

The Ekman layer will transport warm water.  Since T0

decreases as ∅ increases, in the tropical gyre VE
∂T12

∂∅
<

0 and there is an upward advection of warm water as 

well as a diffusion of heat down from the Ekman 

layer. So as is shown by fig. 4, Forcing function at the 

top Ekman layer is positive at low latitudes.  As seen 

from Fig. 5, at low latitudes, the Ekman layer is a 

source of heat (T12 > 0) .

Figure 5. The T2 field in a meridional section (solid and dash 

lines indicate spherical and ß plane coordinate results).

(a) 

(b) 

(c)
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3-2-3- western boundary current

Now consider the western boundary current advection

solution, T13. The governing equation defining T13 is
as follows: 

∂2T13
∂Z2

+
1

cosϕ

∂

∂ϕ
(cosϕ

∂T13
∂φ

) +
1

cos2φ

∂2T13
∂λ2

= 0 

(61) 

With the homogeneous and below boundary 

conditions: 

∂T13
∂λ

= δ ∑ ∑ σ∗B(n,m)cos (n

∞

m=1

∞

n=1

−
1

2
)πφ cos(m

− 1) πδz  at  λ = 0 

The solution to equation (61) is: 

T13

= σ∗δ(λ

−
λ2

2
)∑ ∑ B(n,m)cos (n −

1

2
)π

∞

m=1

∞

n=1

φ cos(m

− 1)πδz

+ σ∗δ∑∑ ∑ C13(n,m, k)cos (n

∞

m=1

∞

n=1

−
1

2
)πφ cos(m − 1)πδz  cos (k − 1)πλ 

(62) 

Where C13(n,m, k) and B(n,m)are obtained by

substituting equation (62) into equation (60), Fourier 

decomposing in the ∅ and Z directions and solving the 

resulting equations for them.  

Figure6. The forcing function at the western side. 

We have 
∂T13

∂λ
< 0 at the edge of boundary current. 

The heat advected to higher latitudes by the boundary 

current diffuse into the interior (Fig. 6). The effect in 

the tropical gyre is small, since 
∂T13

∂λ
 is small and the 

transport is also small. T13is positive everywhere so

the net effect is warming of the water everywhere, as 

seen in Fig.  7a,b,c. 

Figure7. 𝐓𝟏𝟑 field in a meridional section. (a) λ=0, (b) λ=0.5, (c)

λ=1 

(solid and dash lines indicate spherical and ß plane coordinate

results). 

3-2-4- upwelling and downwelling

The coastal upwelling induces the solutionT14 .The

equation governing T14 is:

∂2T14
∂Z2

+
1

cosϕ

∂

∂ϕ
(cosϕ

∂T14
∂φ

) +
1

cos2φ

∂2T14
∂λ2

= 0 

(63) 

With the homogenous and below boundary 

conditions: 
∂T14

∂λ
= ∑ ∑ D(n,m)cos (n −∞

m=1
∞
n=1

1

2
)πφ cos (m −

1

2
)πδz   at  λ = 0,1 

(64) 

The solution to equation (63) is: 

T14 = λ∑ ∑ D(n,m)cos (n −
1

2
)π

∞

m=1

∞

n=1

φ cos (m

−
1

2
)πδz

+∑∑ ∑ C14(n,m, k)cos (n

∞

m=1

∞

n=1

−
1

2
)πφ cos (m −

1

2
)πδz  cos (k

− 1)πλ

(65) 

(b)

(c)

(a)
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Where the values of D(n,m) and C14(n,m, k) are

obtained by substituting equation (65) into equation 

(63), using the orthogonally property of cos (n −
1

2
)πφ and cos (m −

1

2
)πδz and solving the resulting 

equation for C14(n,m, k).
The baroclinic upwelling and downwelling next to the 

meridional boundaries produce a positive value of 
∂T

∂λ

at the western and eastern sides (Fig. 8), i.e., cooling 

effects at the western boundary and heating at the 

eastern boundary. We find a diffusion heat from east 

to west.  

Figure8. 𝐓𝟏𝟒 field in a meridional section. (a) λ=0, (b) λ=0.5, (c)

λ=1 

(solid and dash lines indicate spherical and ß plane coordinate

results). 

3.3. Comparing Results in Cartesian and Spherical 

Coordinate 

 From the zero order solution, we display the 

temperatures field which is produced by diffusive 

balance. Heating over the ocean surface diffuses 

throughout ocean. The zero order temperature field 

has a smooth meridional variation, with the isotherms 

starting out horizontally from the equator and rising to 

the surface exponentially, as shown in Fig.2. The 

spherical-system generally shows warmer 

temperatures and a deeper thermocline than the ß-

plane system and there is approximately 10% 

difference between the two cases. 

The first order temperature field has been divided into 

four sub-problems as described in the former section. 

The nonlinear interior temperature advection to first 

order is due to the barotropic velocity. Fig.3a indicates 

the meridional temperature advection forcing function 

and Fig. 3b shows the vertical temperature advection 

forcing function in the interior. Since the vertical 

advection is stronger than meridional advection, the 

major effect will be due to vertical advection. Fig.3c 

gives the total interior advective forcing.  

 Considering equation (46) for T11 , one can see that a 

positive advection term corresponds to a heat sink in 

the first order calculation and a strong, unbalanced 

interior heat sink at low latitudes. The difference 

between the ß-plane and the spherical-system in the 

vertical advection is reasonable at low latitudes (5%). 

In the meridional advection, the difference will be 

between 20% and 50%. The spherical-system shows 

less cooling than the ß-plane system result.  

The Ekman layer will transport warm water. As is 

shown by Fig. 4, the corrected boundary condition is 

positive. As seen from Fig. 5, the Ekman layer is a 

source of Heat. The difference between the ß-plane 

and the spherical-system is about 20%. 

The western boundary current advection is barotropic. 

As shown in Fig.  6, the effect in the tropical gyre is 

negative and small, as 
∂T3

∂λ
is small, the transport is 

less. T13 is positive everywhere so the net effect is a 

warming of the water everywhere, as seen in Figs. 7a, 

7b and 7c. There is about 10% to 25% difference, with 

the spherical-system showing warmer temperatures.  

In Fig 8, isotherms in western side indicate cooling 

but for eastern side there is an opposite sign, which 

indicates warming there.There is a small difference 

between the ß-plane and spherical system. It is about 

5% zonally, which seems reasonable since in the east-

west direction, the 𝛽 effect is not important. 

If we add the three wind induced temperature 

corrections together (T11+T12+T13), At low latitudes 

there is a cooling due to interior advection. Also, there 

is a difference between the ß-plane system and sp-

system of about 10% at low latitudes (see Fig.9). 

Figure9. the solution to problems T1+T2+T3 for (a) λ=0, 

(b)λ=1

(a)

(b) 

©

(a) 

(b) 
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If we add the baroclinic upwelling and downwelling 

to the first three results we will have an additional 

cooling along the western side. This is seen in Fig. 10.  

Figure10- the solution to problems T1+T2+T3+T4 for (a) λ=0, 

(b)λ=1

The total field, T0+T1R0E
-1

, shown in Fig. 11, is

reasonable. the isotherms are shallow at the equator 

and reach a maximum depth at mid-latitude and then 

rise to surface exponentially. 

Figure 11- the solution to problems T0+T1R0E
-1 

Figure12. total solution T0+T1R0E
-1 at z=0 

Fig. 12 shows the surface temperature field, 

T0+T1R0E
-1

. In the tropical region, the eastern surface

water is warmer than the western surface water, since 

in the tropical region there is a downward slope of the 

isotherms to the north, we will have a westward 

baroclinic current in the upper layer at low-latitudes. 

Summary and Conclusions: 

Now let us summarize the results of this paper. The 

zero order temperature field gives on overall 

representation of the ocean thermocline. Associated 

with this field there is a baroclinic eastward flow in 

the upper layer with a weak westward return flow 

below. This circulation is closed in the upwelling and 

down welling layers at the western and eastern sides, 

respectively. The first order correction, T1, is divided 

into four temperature fields. The nonlinear interior 

advection is due to the meridional and vertical 

advection and produces cooling everywhere. The 

Ekman layer will transport warm water and there is an 

upward advection of warm water as well as a 

diffusion of heat down from the Ekman. The Ekman 

layer is a source of heat. After considering the western 

boundary current advection solution, it is find the 

effect in the tropical gyre is small, since 
∂T13

∂λ
 is small 

and the transport is also small. Since T13 is positive

everywhere so the net effect is warming of the water 

everywhere. 

The baroclinic upwelling and downwelling next to the 

meridional boundaries produce a positive value of 
∂T

∂λ

at the western and eastern sides. Cooling effects at the 

western boundary and heating at the eastern boundary. 

We find a diffusion heat from east to west.  

If we add the first three temperature fields together, 

the net effect is a cooling of surface water near the 

northern boundary due to the Ekman advection. If we 

superpose the effect of upwelling, it will add an 

additional cooling along the western side and 

additional warming along the eastern side.  

The total temperature field (𝑇0 + 𝑇1𝑅𝐸
−1) gives a

result which seems reasonable. The thermocline is 

shallow and concentrated at the equator. Isotherms 

reach a maximum depth at mid-latitudes. 

There are significant differences between the ß-plane 

system and the spherical system. In the temperature 

field the variations range is from 5% to 50%. The 

(a)

(b)
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results of two systems are, however qualitatively the 

same. 
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