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The capacity curve obtained from the pushover analysis of jacket-type offshore 

platforms gives their structural performance levels, ultimate capacity and 

ductility. Accurate estimation of structural capacity curve is of great 

importance. Accurate modeling of the global and local buckling of compression 

tubular members in a correct form is an effective part of studying the behavior 

of offshore jackets under all various types of loading conditions at any given 

time of their life. Modeling of compressive braces by shell or solid elements 

when the imperfections are applied leads to deformations due to local buckling 

based on buckling modes. This paper aims to achieve more accurate 

compressive behavior of compression members. The ABAQUS finite element 

software has been used for this purpose. Regarding to the results achieved from 

investigation of buckling in tubular members proper elements have been 

introduced to investigate the global and local buckling phenomena. Then 

pushovers results of Ressalat jacket with conventional modeling versus more 

accurate modeling proposed in this paper for compressive members have been 

compared as a case study. According to the results applying improper mesh size 

for compressive members can under-predict the ductility by 33% and under-

estimate the lateral loading capacity up to 8%. Finally, ISO equations and 

Marshall strut theory have been applied to investigate critical buckling load and 

post-buckling response of tubular braces. The innovation of this paper is 

investigating the interaction of global and local buckling in the braces of jacket 

with 1-Dimentional elements using ISO equations and buckling envelope 

derived from the solid element results, which results in low computational costs. 
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1. Introduction
Critical buckling loads can be calculated for tubular

members using empirical equations. These equations

are presented by design codes such as API RP-2A

WSD and API RP 2A-LRFD (recommended practice

for planning, designing, and constructing fixed

offshore platforms), ISO 19902 and NORSOK N-004

to achieve load and resistance design factors. All of

these codes have been checked in order to assure that

design loads do not meet critical buckling loads in

normal and extreme operational conditions. Also both

global elastic buckling and inelastic buckling are

covered by design codes where prevent local buckling

in walls of tubular members by decreasing the loads.

Even to ensure that applied loads do not exceed the

1 Ductility Level Earthquake 

critical buckling loads in normal operations, these 

codes explain structural configuration of members. 

Some members compress higher than their buckling 

limit under extreme load conditions such as ductility 

level earthquake (DLE1) and the results of this case on 

the behavior of the structure also need to be examined. 

It is possible that the structures are designed in such a 

way that local buckling occurs in some members under 

extreme loads. Subsequently, in the process of analysis, 

it is checked that the level of structural failure remains 

within acceptable limits. In this analysis, the actual 

response of the structure is obtained. For this purpose 

load factors and capacity factors are equal to 1. It is 

important that local buckling of members and their 

post-buckling behavior are detected, correctly. So that 
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the load transfer to adjacent elements is not 

underestimated. Nonlinear finite element models with 

1-D beam elements are usually used to analysis the

collapse of jacket structures. But the beam elements do

not consider the local buckling response and local

deformation of walls of members. Local buckling often

occurs in members with low ratio of diameter to

thickness ratio (D/t). As the diameter to thickness ratio

increases, local buckling is postponed to global

buckling, and this event leads to a further drop in post-

buckling capacity in comparison with the value that

predicted by using the beam element. Also, models

with beam elements cannot directly consider radial and

circumferential imperfections due to fabrication

tolerances which reduce load carrying capacity.

When shell elements are used to model thin-walled

tubular members, the model elements is capable of

considering global and local buckling at shell walls

simultaneously.

The following is an overview of the researches that has

been conducted to investigate the buckling of the

tubular members. Karamanos and Tassoulas [1]

derived curves concerning the capacity of tubular

members using a nonlinear FE technique under the

combination of external pressure and bending.

Sadowski and Rotter [2] investigated the structural

behavior of tubular columns under buckling

phenomenon considering shell elements. Bardi and

Kyriakides [3,4] studied the plastic buckling range of

thick cylindrical shells. They focused on circular

stainless steel tubes in both experimental and analytical

phases. Yasseri and Skinner [5] in 2006 studied the

global and local buckling of and their interaction for

tubular members under concentrated force and

moment. They classified the compressive members

based on the diameter to thickness ratio (D/t) and the

ratio of length to gyration radius (L/r). They proposed

the suggested API curve of elastic and non-elastic

buckling based on the slenderness. They also studied

the effects of the imperfection of compressive

members. The modified properties of steel material

which can be used for beam elements to achieve the

same response of shell elements have been also

presented in that report. Wenjing and Hoogenboom [6]

in 2011 checked the buckling of the frame members

when the buckling length has been set manually. Based

on their estimation, 5 to 10% of the man-hours in

structural analysis of removal projects has been spent

on checking and correcting buckling lengths. Using

another method is available that does not require

determining buckling lengths. In the study, the

NORSOK standard for tubular steel frame structures

has been used to derive this method. They concluded

that this method can be successfully applied. In this

paper, for a 2-D frame of a typical jacket platform, the

global and local buckling of models developed by using

shell or beam elements are compared. Also, the

responses of beam elements that can consider the

effects of local buckling are obtained. For this purpose, 

the Marshall strut theory in the ABAQUS finite 

element software suite is used. 

2. Analytical models
Two types of second-order shell and beam elements

have been used to develop the models. Frame elements

have been used to reflect the effect of local buckling

that it can be formed well in the walls of tubular parts

,modeled by shell elements, because of local

deformations. The most important difference of beam

elements compared to frame elements, is that frame

elements use ISO 19902 buckling equations in addition

to the beam elements equations. Also, in terms of

numerical modeling, the number of frame elements is

limited to one mesh element in length. After the

buckling happens, the response of standard frame

element is switched to the buckling strut response and

is never switched back again. If the buckling strut

response is requested for the element from the first step

of the analysis, the member will be changed to a

simply-supported member, so that the member cannot

resists against bending moments. The proper meshing

of elements in a model provides optimum precision.

When a fine-meshed shell model is used, local buckling

occurs earlier than beam models and also does not

reach the same post-buckling strength in the load-

displacement graph. But frame elements correct this

deficiency of beam elements and also reduce the

computational costs.

A primary imperfection equal to 0.1% of member

length has been applied to the compressive members of

shell and beam elements to consider the buckling

phenomena. It is necessary first to obtain probable

buckling modes by calculating the eigenvalues of the

model, in order to determine the locations of imperfe-

ctions. The models with frame elements do not require

applying the imperfection; these types of elements

consider both elastic and inelastic buckling.

The mesh size is almost the same at both models of

shell elements and beam-frame elements, So that the

results are better comparable. Of course, it should be

noted that frame elements only have a single mesh

along its length.

3. Analysis method
The static Riks analysis method has been used in

ABAQUS software because the other analysis methods

become unstable under a sudden reduction in stiffness

due to buckling. In the Riks procedure, deformations

and loads are considered simultaneous-ly. This means

that the magnitude of the load is taken as a variable and

the arc length method, in a static equilibrium in the

load-displacement space, is used to obtain the solution

[7]. So, the ABAQUS program is able to discover the

post-buckling response of the model by reducing the

applied load and solving the load-displacement

equation.
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The models of beam and shell elements with and 

without imperfection are analyzed by this method. And 

the buckling and post-buckling responses of both 

element types are compared. 

4. Loading
The purpose of this paper is to estimate the pushover

curve of the structure by enforcing lateral displace-

ment and extracting the base shear. This lateral

displacement can be imposed on solitary node placed

on highest deck of jacket or distributed to all nodes at

different levels of the platform along the height. In each

case the reaction forces at the level of the fixed supports

at the bottom of piles, which is the base shear and equal

to the total load applied to the platform, have been

calculated. Therefore, the approach of displacement-

control has been adopted in this paper. So, ductile

behavior of structure can be observed correctly in load-

displacement curve obtained from pushover analysis.

Fig. 1 illustrates two distributions of lateral

displacement applied in this paper.

Figure 1. Two types of distribution of lateral displacement 

applied in FE models 

5. Material properties
Almost all the elements have been defined by yield

stress of 355 MPa and ultimate strength of 535 MPa at

a plastic strain of 0.144. The narrowing test of the

coupon bar under axial load is used to obtain true

stresses. The values of true stresses and logarithmic

strains are calculated from the nominal experimental

values using the following equations.

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑛𝑜𝑚(1 + 𝜀𝑛𝑜𝑚)           (1) 

𝜀𝑙𝑛
𝑝𝑙 = ln(1 + 𝜀𝑛𝑜𝑚) − 𝜎𝑛𝑜𝑚/𝐸           (2) 

6. Buckling prediction, analytical equations
This part describes the ISO equation in detail, but the

differences of the approach of other standards have

been explained [8]. All four codes (API RP-2A WSD,

API RP 2A-LRFD, ISO 19902 and NORSOK N-004)

provide sets of formulations for each load type acting

alone or in combination. The ISO equation is used with

a high accuracy to predict the onset of buckling in

slender members with pipe-like cross-sections. All

quantities with dimensions have dimensions of stress.

𝛾𝑅.𝑐𝜎𝑐

𝑓𝑐

+
𝛾𝑅.𝑏

𝑓𝑏

[(
𝐶𝑚.𝑦𝜎𝑏.𝑦

1 − 𝜎𝑐 𝑓𝑒.𝑦⁄
)

2

+ (
𝐶𝑚.𝑧𝜎𝑏.𝑧

1 − 𝜎𝑐 𝑓𝑒.𝑧⁄
)

2

]

0.5

≤ 1.0 

and                 (3) 

𝛾𝑅.𝑐𝜎𝑐

𝑓𝑦𝑐
+

𝛾𝑅.𝑏√𝜎𝑏.𝑦
2 + 𝜎𝑏.𝑧

2

𝑓𝑏
≤ 1.0 

Here, fc is the characteristic axial compressive stress,

fb is the characteristic bending stress, cm1 and cm2 are

reduction factors corresponding to the cross-section 

directions 1 and 2, and Fe1 and Fe2 are the Euler

buckling stresses corresponding to the 1 and 2 

directions. 

𝐼11 = 𝐼22 =
𝜋

64
(𝐷4 − (𝐷 − 2 𝑡)4)          (4) 

𝑍𝑒 =
𝜋

64
(𝐷4 − (𝐷 − 2 𝑡)4) (

𝐷

2
)⁄        (5) 

𝑍𝑝 = (𝐷3 − (𝐷 − 2 𝑡)3) 6⁄        (6) 

𝑟 = √𝐼22 𝐴⁄ =
1

4
√(𝐷2 − (𝐷 − 2 𝑡)2)    (7) 

Local buckling check in ISO and NORSOK is based on 

material as well as geometric properties of members 

whereas in API WSD and API LRFD it depends on 

only geometry parameters. Therefore, the terms of the 

ISO equation are calculated as follows: 

𝑓𝑐 = 𝑃/𝐴     (8) 

𝑓𝑏𝑖 = 𝑀𝑖/𝑍𝑒 (9) 

𝐹𝑦𝑐 = 𝑓𝑦      for   
𝑓𝑦

𝐹𝑒
≤ 0.17 

𝐹𝑦𝑐 = (𝑐2 − 𝑐3
𝑓𝑦

𝐹𝑒
) 𝑓𝑦 for  

𝑓𝑦

𝐹𝑒
≤ 1.911    (10) 

𝐹𝑦𝑐 = 𝐹𝑒      for   
𝑓𝑦

𝐹𝑒
> 1.911

𝑐2 = 1.04654873  &  𝑐3 = 0.27381606      (11) 

𝐹𝑒 = 2𝐶𝐸 (
𝑡

𝐷
)  &      𝐶 = 0.3 (12) 

Where, Fyc is the local buckling strength and for 
fy

Fe
>

1.911 the Fyc is equal to the elastic local buckling

strength (Fe). There is only a slight difference in

limitation between ISO and the NORSOK code but 

both of them have the same approach. API WSD and 

LRFD codes distinguish between elastic and inelastic 

buckling stresses. The inelastic local buckling stress 

formula proposed by API WSD and LRFD codes is as 

follows: 

𝐹𝑦𝑐 = 𝑓𝑦           for 
𝐷

𝑡
≤ 60 

𝐹𝑦𝑐 = (1.64 − 0.23(𝐷
𝑡⁄ )

1 4⁄
) 𝑓𝑦 ≤ 𝐹𝑒 (13)      

for    60 <
𝐷

𝑡
< 300;  𝑡 ≥ 6 𝑚𝑚 

In the above local buckling equations, ISO and 

NORSOK codes limit D/t to a maximum of only 120, 

whereas the API increase the upper limit of D/t ratio to 

300 meaning that NORSOK is significantly more 

conservative. 

Fc = [1 − 0.278λ2]Fyc for    λ ≤ 1.34 

     (14) 

Fc =
c1

λ2 Fyc   for    λ > 1.34 

λ = max(λ1, λ2)   &  c1 = 0.89282978       (15) 

3.0 m 

2.4 m 

2.1 m 

1.5 m 

0.9 m 

3.0 

m
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λi =
kiLi

πr
√

Fyc

E
(16) 

Where, Fc is the representative axial compressive

strength, in stress units; λ is the column slenderness 

parameter. The two API LRFD and NORSOK codes 

recommend formulae similar to ISO form but employ 

different coefficients. The overall column buckling 

formula in API WSD uses the AISC formulation, while 

API LRFD, ISO and NORSOK are limit state design 

(LSD) or LRFD based. The NORSOK recommended 

equation gives lower capacity than API LRFD and ISO. 

Unlike the other three standards, NORSOK code 

assumes that the platform is manned even during 

extreme environmental events, so in calculation of both 

local and overall buckling strength, NORSOK is more 

conservative. The API WSD formula in accordance 

with AISC is as follows: 

Fc =

[
(1−(Kl

r⁄ )
2

)

(2Cc
2)

⁄ ]

5 3⁄ +3(Kl
r⁄ ) (8Cc)⁄ −(Kl

r⁄ )
3

(8Cc
3)⁄

fy for 
Kl

r
< Cc

     (17) 

Fc = 12π2E [23(Kl
r⁄ )

2
]⁄       for  Kl r⁄ > Cc

Cc = (2π2E fy⁄ )
1 2⁄

   (18) 

Fb = (Zp/Ze)fy

for  
fyD

Et
≤ 0.0517 

Fb = (c4 − 2.58 (
fyD

Et
)) (Zp/Ze)fy

for  0.0517 <
fyD

Et
≤ 0.1034       (19) 

Fb = (c5 − 0.76 (
fyD

Et
)) (Zp/Ze)fy

for  0.1034 <
fyD

Et
≤ 120

fy

E

c4 = 1.133386  &  c5 = 0.945198 (20) 

Where, Fb is the bending strength. The formulae from

all four codes are the same but the API WSD has 

different coefficients. According to above equations, 

elastic section modulus, plastic section modulus and 

yield strength can be seen in formulae because LSD and 

LRFD approaches consider full plasticity and yielding 

in the section, whereas because of WSD methodology 

which limits the stress to a fraction of the yield, only 

the yield strength exist in API WSD equations. 

Also in evaluation of bending capacity NORSOK is 

more conservative than three others. 

𝐹𝑒𝑖 =
𝐹𝑦𝑐

𝜆𝑖
2    (21) 

Where, Cm1 and Cm2 are reduction factors

corresponding to the cross-section directions 1 and 2. 

These factors are functions of the end moments, 

compressive stress and Euler buckling stresses with the 

default values of 0.85. By satisfying the following 

condition: 

𝐼(𝑓𝑐 , 𝑓𝑏1, 𝑓𝑏2) = 1.0                                                (22)

Standard frame element response is switched to the 

buckling strut response and is never switched back 

again. The ISO equation yields the critical load, Pcr,

which is defined as fcA. When the axial forces are

negligible and the bending moments have large values, 

another inequality is also used. This additional control 

is called the strength equation and is as follows: 

𝑆 =
𝑓𝑐

𝐹𝑦𝑐
+

1

𝐹𝑏
√𝑓𝑏1

2 + 𝑓𝑏2
2 (23) 

The API WSD, ISO and NORSOK codes formulae 

have the same linear form with some partial 

differences, while API LRFD recommends a cosine 

form equation. 

Both the following equations must be satisfied (I=1.0 

and S≤1.0) to switch to the buckling strut behavior for 

a frame element. 

I=1.0      (24) 

S≤1.0         (25) 

If the buckling strut response is requested for the 

element from the first step of the analysis, the member 

will be changed to a simply-supported member and the 

bending moments cannot be supported by the member. 

In this state, the ISO equation turns into the following 

simple equation. 

𝑃𝑐𝑟 = 𝐹𝑐𝐴        𝑎𝑛𝑑       𝑓𝑐 < 𝐹𝑐                               (26)

6.1. Marshall Strut Envelope 

The Marshall strut envelope defines the post-buckling 

damaged elasticity model and the hysteretic loop 

response [9]. To define the Marshall strut envelope, the 

value of Pcr and the following seven constants are

needed: 

ξ: is the coefficient defining Py = ξσ0A (ξ = 0.95)

γ: is the isotropic hardening slope coefficient (0.02), 

α0: is the coefficient defining= α0 + α1
L

D

α1: is the coefficient defining= α0 + α1
L

D
, (α0 =

0.03) , (α1 = 0.004)

κ: is the force coefficient (0.28), 

β: is the slope coefficient (0.02), and 

ζ: is the force coefficient (min (1.0 , 5.8 (
t

D
)

0.7
ξ⁄ )). 

Figure 2. Marshall strut theory buckling envelope 
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The values in parentheses are the default values 

supplied by ABAQUS, and the value of Pcr is found

from the ISO equation as explained above. The 

Marshall envelope governs the compressive and tensile 

response of the strut as shown in Fig. 2. The dotted lines 

in the interior of the envelope indicate the damaged-

elastic modulus defining the loading-unloading force 

versus strain path [10]. 

7. Modeling
A 3-Dimensional model of one frame of a four-leg

Ressalat jacket platform of Persian Gulf has been

performed. The schematic geometry and dimensions of

the platform are shown in Fig. 3. All of the joint cans

and the principal details have been taken into account

in FE modeling.

Regarding to aspect ratios of sections used in the

model, the maximum and minimum L/r ratio of the

compressive braces are 126.01 and 118.63,

respectively.

In this paper, the FE modeling of jacket is categorized

into three main steps. On the first step, the jacket has

been modeled using common two-node linear beam

elements and 3D shell element both of which have been

meshed with the common and traditional mesh size.

The mesh size selected in this step is extensively 

applied in FE modeling of wide range of papers. 

Afterwards, in the second step the shell elements with 

optimized mesh size based on the previous studies of 

the authors [11,12,13,14], were replaced with the 

compressive braces of the platform. The mesh sizes 

applied in the second step can properly predict the 

buckling occurrence and post-buckling strength of 

braces. Changes in the structural behavior of the jacket 

have been considered at this step and represent below. 

Finally, in the third step all the braces have been 

replaced by two-node frame elements. The buckling 

behavior of each frame element has been achieved 

according to buckling behavior of respective brace 

model with 3D shell elements and Marshal strut 

envelope. Applying two-node frame elements conducts 

the models toward reducing the run time and costs of 

analysis. Pushover analysis has been executed as an 

approach to distinguish variations of results in different 

steps. The main deck has been simulated on the upper 

end of the piles in the form of a rigid connection 

between pile heads. Two concentrated masses have 

been applied on pile heads. Each of them has been 

assumed equal to 25% of the total mass of the platform 

deck, i.e. 2500 tones. 

Figure 3. Schematic geometry of one row of Ressalat jacket and FE model 
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Jackets and piles have been modeled separately and the 

cylindrical connection has been defined between them 

so that the piles can drive freely into the legs in 

rotational and translational degrees of freedom. In all 

the models, the pile stub technique has been used and 

the fixed end point of the piles has been set at a depth 

equal to 10 times its diameter. Fig. 4 shows the 

geometry modeled with shell elements. 

The schematic view of all types of cross-section 

geometries defined for frame elements have been 

shown in Fig. 5. 

8. Results
The critical buckling loads obtained from the numerical

models with frame elements have been compared with

the results of the ISO equation. Eventually, the most

differences in all cases have been limited to 2 percent.

Failure due to elastic buckling of the member occurs 

prior to material yielding by increasing the length to 

radius of gyration ratio (L/r) in long members (L/r >
100). In long members the critical buckling force can 

be predicted by the Euler formula [15]: 

𝑃𝑐𝑟 =
𝑛𝜋2𝐸𝐼

𝐿𝑒2 (27) 

For tubular members with intermediate length (40 ≤
L/r ≤ 100), the material reaches its limit of 

proportionality at the outer fiber of the member leading 

to a reduction in stiffness and kneeling of the section. 

So, the Euler formula overestimates critical buckling 

force. Fig. 6 displays a comparison between the typical 

elastic and inelastic buckling shapes. Also this figure 

demonstrates the variation of critical buckling load 

versus column slenderness parameter, λ. 

In short braces (L/r < 40), the section may meets the 

yielding before occurrence of buckling. 

Figure 4. Model view of shell elements include global geometry of model, geometry of piles driven into legs, geometry of transition 

piece, and the geometry of one tubular connection 
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Figure 5. Geometry of all types of the frame elements cross-sections. All quantities have dimensions of cm. 
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In these members the buckling shape will be similar to 

the elements with moderate length. However, in short 

members a larger area around the buckled section 

meets the yield level. 

By increasing the D/t ratio the flexural stiffness of shell 

wall decreases with a power of 3 [5]. After occurrence 

of the buckling, the shell walls start to swing and 

ultimately the member bends. Local flexural moments 

due to deformation of the shell wall quickly result a 

local plastic zone. Finally, the local buckling which 

reduces the capacity of member leads to global 

buckling. 

Increasing the L/r ratio results in further plastic zone 

and fewer critical buckling load. The enlarged plastic 

area causes a sudden collapse if the local buckling 

occurs in this state [5]. 

Fig. 7 and Fig. 8 present the results of the pushover 

analysis performed on the three separate steps 

explained before. In Fig. 7 the distribution of lateral 

displacement which defined in FE model is triangular 

and has ascending order in height with a maximum 

displacement of 3 m in the main deck. While Fig. 8 

illustrates the results of pushover analyzes with a point-

centered lateral displacement of 3 m at the level of main 

deck. Both of distributions are in accordance with 

pictures shown in Fig. 1. 

The order of buckling occurrence in braces is displayed 

in the Fig. 7. The buckling of the compressive brace 

positioned at the lowest level of the jacket causes 

immediate drop and severe loses of global capacity 

throughout the structure. The buckling of this brace has 

not been observed when proper mesh has been assigned 

to all braces. Therefore, a sharp drop in pushover 

capacity curve has not occurred in models with proper 

mesh and models contain frame elements. According to 

the Fig. 7 applying improper mesh size for compressive 

members can under-predict the ductility by 33% and 

under-estimate the lateral loading capacity up to 8%. 

Each of the braces in model with typical and 

inappropriate mesh, buckled earlier than model with 

proper mesh. 
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Figure 6. A sample of comparison between elastic and inelastic buckling shape;  (a) Elastic buckling (long braces)  (b) Inelastic 

buckling/kneeling (intermediate/short braces)  (c) The critical buckling load versus column slenderness parameter 
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Figure 7. Results of pushover analysis of models with frame and shell elements for push distribution type 1 
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As seen in Fig. 8 the point-centered lateral push of 

jacket, did not actuate the compressive capacity of 

braces and no buckling can be seen in the braces of 

jacket. Finally, only damage occurrence in the pile at 

top level causes immediate resistance loss and global 

collapse of the structural. Also at this distribution the 

frame elements can properly consider the buckling 

capacity of braces due to investigation of the effects of 

local buckling along with global buckling. Besides that 

utilization of frame element can significantly decreases 

the time and cost of analysis and modeling. 

9. Conclusions
It is proved that the frame elements consider interaction

of local and global buckling using ISO equation and

Marshall’s buckling theory that is described in detail in

the paper. However based on the results obtained from

the models, it is possible that frame elements do not

provide accurate prediction of buckling and post-

buckling behavior of structures by incorrect estimation

of various parameters of Marshal’s curve. It should be

noted that the use of frame elements greatly reduces the

analysis costs than those using shell elements. On the

other side, applying proper mesh in structural FE

modeling of jackets with 3D shell or solid elements will

affect the accuracy of the estimation of capacity curve

including two important items of ultimate lateral

bearing and ductility and finally the structural

performance levels derived from this curve. Number of

mesh elements on section and the ratio of element size

along the member length to section are two

fundamental parameters in modeling of compressive

members with 3D shell elements. Improper

determination of these values for braces of jacket could

under-predict the ductility by 33% and under-estimate

the lateral loading capacity up to 8%. But due to

damage occurrence in piles, the behaviors of jackets 

with different mesh size are almost the same when the 

lateral push of the structure concentrated on the level 

of main deck. 

List of Symbols 

D outer diameter 

t wall thickness of pipe 

P axial force 

𝜎0 yield stress 

E Young’s modulus of elasticity 

A cross-sectional area 

Ze elastic section modulus 

k1, k2
effective length factors in the 1 and 2 

directions 

Zp plastic section modulus 

L1, L2
unbraced lengths for the 1 and 2 

directions 

r radius of gyration 

I11, I22
bending moment of inertia in 1 and 2 

directions 
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