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Tuned liquid column gas damper is a new type of energy absorber that can 

mitigate the vibrations of structures if their frequency and mass parameters are 
well tuned. Since this damper has recently been introduced and its behaviour 
in certain structures such as offshore oil platforms and wind turbines has 

already been tested, a suitable and accurate method is required to identify 
these optimal parameters. Therefore, considering the complexity of loads 
exerted on wind turbines in seas (wave and wind loads), in present study 

attempts are made to use a new artificial neural network approach to obtain 
optimal tuned liquid column–gas damper (TLCGD) parameters for mitigation 

of wind turbine vibrations. First fixed offshore wind turbines at various depths 
are designed in the MATLAB coding environment. After obtaining the 
stiffness, damping and mass matrices of the structures, the program enters the 

Simulink, and the wind turbine structure along with the TLCGD is exposed to 
different wave-wind load combinations within reasonable range of damper 
parameters. The neural network training is launched based on available 

statistical data of the offshore wind turbine with different heights as well as 
different frequency and mass ratios of the damper. According to this method, 
the percentage of errors found in the neural network outputs was negligible 

compared to the actual results obtained from the analysis in Simulink (even 
for inputs that stood outside the training range of the neural network). The 
mean error percentage, the standard deviation and the effective value of the 

neural network with actual values are below 10% for all three types of the 
structure. Finally, the method presented in this study can be used to obtain 
optimal parameters of the TLCGD for all kinds of offshore wind turbines at 

different depths of the sea, which leads to the optimal design of this damper to 
reduce the vibrations of wind turbines under wave and wind load pressures. 
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1. Introduction
Wind energy provides an environmentally friendly

option .It can also provide sustainable development

security when fossil fuels are reduced [1]. Nowadays, 

offshore wind turbine is one of the sources of wind 
energy in the world. Offshore wind turbines (OWTs) 

are one of the structures continuously under dynamic 
loads during their lifetime. It is also important to 
locate these turbines in the wind farm and calculate 

the optimum locations [2]. By installing the wind 
turbines in the sea, new issues arise when installing 
these structures on land, which are due to additional 

loads of the sea environment and special features of 
the design of this structure [3]. The vibration control 
devices have been invented and used to reduce the 

vibrations caused by wind, earthquake, and any other 

dynamic load in a variety of structures. The tuned 

dampers, including TMD, TLCD, and TLCGD are 
one of the vibration reduction tools that are used 
passively. These dampers are of inactive (passive) 

type and their parameters are designed once according 
to the structure's characteristics, which remain 
constant throughout the exploitation time [4]. 

Moreover, recently semi-active damper (SALCGD) 
also assessed [5]. In other words, in addition to being 

permanently induced by vibrations and stimulations 
due to the wind loads, the loads resulting from the sea 
environment such as the wave load, sea flows, etc. are 

applied to the wind turbines. This led Lackner and 
Rotea (2011) [6] to study the inactive control of the 
vibrations of the offshore wind turbines. Lackner and 

Rotea (2011) [7] also examined the control of the 
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floating wind turbines vibrations. Later in 2011, 

Stewart and Lackner studied the effect of dynamic 
stimuli on the active control of the offshore wind 
turbines [8]. These studies have examined a variety of 

tuned dampers, including the tuned mass damper 
(TMD), the tuned liquid dampers (TLD), the tuned 
liquid column dampers (TLCD) and the active mass 

dampers (AMD) for two types of single-pile and 
floating wind turbines. Since, among the marine 
conditions, the load caused by the wave have a higher-

lasting o effect on the marine structures, the offshore 
wind turbines were controlled under the simultaneous 
stimulations of wave and wind in the latest research 

by the TLCGD damper and its vibrations decreased 
[9]. Then, the effect of this damper on the reduction of 
forces caused by the earthquake was evaluated in the 

offshore wind turbine with the template support 
platform [10]. However, two recent studies have 

shown that the TLCGD damper parameters should be 
properly optimized for this structure given the 
complex dynamic conditions of the offshore wind 

turbine, especially due to the wind turbulence that 
cannot be equated with sine stimulation and the 
effects of gust, wind cutting, and turbulence as well as 

the pitch controlling and the stall dynamic system of 
the turbine should be considered. In other words, it 
should be possible to estimate the reduction rate of 

responses during the presence of the damper with the 
changes in the main parameters of the damper. 
Therefore, since it was found in the research that no 

regular process and definite relationship can be 
achieved for this issue, in this research, we used the 
artificial neural networks method to estimate the 

reduction rate in the response rate of the offshore 
wind turbine in case of employing the TLCGD 

damper with changes in its main parameters. We used 
an offshore wind turbine with three different 
supporting platforms at different depths of the sea 

instead of a one- degree of freedom structure in this 
paper to reduce the uncertainties in the optimal 
parameter relationships. Also, a set of s simultaneous 

combination of wind and wave loads was used to find 
these parameters. By applying the above, these 
conditions can be brought into reality as much as 

possible so that the outputs would be more reliable. 

2. Governing Equations of OWT with

TLCGD
Energy absorbers reduce the response of the structure

under dynamic loads by absorbing some of the energy
input to the structure. The above explanation is based
on energy, although it can also be explained based on

force. The energy absorbers have a vibrational mass
called the secondary mass. The secondary mass
applies force to the main structure with its vibration. If

the energy absorber frequency is tuned (set), this force
acts in a way to reduce the response of the original
structure. Simply put, when the main structure moves

to the right, this force enters the main structure in the 

left direction, and vice versa, when the main structure 
moves to the left, the power is applied to the right. 
The above force is the result of two forces: The force 

resulting from the total inertia of the TLCGD due to 
the absolute acceleration of the structure (the 
acceleration of a point of the structure where the 

TLCGD is installed) and the force generated by the 
inertia of fluid movement inside the horizontal 
column of the TLCGD. It should be noted that in the 

case of the second force, only the motion of the fluid 
in the horizontal column is raised as the movement of 
fluid in the vertical columns causes the applied 

vertical forces, which do not affect the lateral 
response of the structure. If the first force is 
represented by F1 and the second force with F2, we 

would have: 

yAByABFxmF hbf
   21 , (1)

It's worth noting that in the above equation, only F2 
reduces the response of the main structure and F1 

actually raises the responses since the force F1 in the 
direction of the inertia force of the main structure but 

the force F2 is in the opposite direction. However, the 
values of these two forces are such that their outcome 
leads to reduced responses. In other words, the 

absolute value of F2 is greater than the absolute value 
of F1 (in the circumstance that the damper parameters 
are optimal). With the algebraic summation of the two 

above-mentioned forces, the force applied by the 
TLCGD to the structure is obtained as follows. 


Bh

B
kykxmF f




2
,)(  (2) 

In the above equation, the fluid weight inside the 
TLCGD is shown with mf, x also represents the local 

displacement of the structure where the TLCGD is 
located and the above force is applied at the same 
point to the main structure. It should be noted that the 

mass of the TLCGD pipes is usually ignored or their 
mass is considered in the mass of the main structure. 
Also, the equation of the fluid flow (movement) in the 

damper, based on which, the acceleration values of the 

fluid are obtained in the horizontal x and vertical 
y

columns to be used in Eq. (2), is described in details 

in [8]. 
In the end, the motion equation of the multi-degree 

system of the offshore wind turbine along with the 
damper can be written in the form of a matrix as 
follows. 

[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = [𝐹]𝐴𝑒𝑟𝑜 + [𝐹]𝐻𝑦𝑑𝑟𝑜+

[𝐹]𝑇𝑙𝑐𝑔𝑑                    (3)

Wherein: [M]: Structure mass matrix; [C]: The 
structure intrinsic damping matrix considered as such 
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due to the Cauchy damping factor so that the damping 

ratio in all modes would be equal to 2%. The 
complete details of the Cauchy damping method are 
presented by Chopra (1995) [11]. [K]: Structure 

hardness matrix; {u}, {u ̇}, {u ̈}: Vectors of 
displacement, velocity, and acceleration of the 
structure response; [F]Aero: The vector of aerodynamic 

forces (These forces are calculated by the FAST 
program [12] and only enter the turbine system 
section and are equal to zero on the support platform); 

[F]Hydro: The vector of hydrodynamic forces (These
forces are calculated using the modified Morrison
equation [13] only enter the turbine system section

and are equal to zero on the support platform); [F]Tlcgd: 
The vector of the TLCGD force (This force is
calculated using equation 2 and only applies to the

NACELLE turbine level and is zero at other levels of
the system [14])

It should be noted that due to the use of the
centralized mass model and considering that the mass
of each level is concentrated in only one point, then,

the number of degrees of freedom of the system is the
same as the number of the levels considered.

3. Simulation of the OWT -TLCGD in the

Simulink
Simulink is a simulation tool equipped with
MATLAB software. Simulink has general
applications and is not limited to any particular uses

like many other engineering simulation software.
Using the Simulink, we can dynamically analyze the
behavior of a system without the need to build it and

only by having the mathematical relations governing
that system by saving time and cost [15]. In the

present paper, we used this tool for modeling and
analysis due to the large volume of computations as
well as the interaction and coupling equation between

the structure, and damper, and aerodynamic and
hydrodynamic loads.
There are two ways to model damper in the Simulink:

1. Considering the location of the TLCGD as a
separate alignment (level); In case of using this
method, the matrices of mass, stiffness, and damping

of the structure will change in the non-TLCGD state.
2. Applying the corresponding TLCGD force
into its location; in case of using this method, the

structure and TLCGD can be analyzed with their own
specifications separately and without any changes.

In this paper, the second method was used for 

simulation in the Simulink. To use this method, the 
multiple-degrees of freedom structure is stimulated by 
a single stage of loading. Therefore, for an n-degrees 

of freedom structure, we will have: 

[𝑀]𝑛×𝑛{�̈�} + [𝑐]𝑛×𝑛{�̇�} + [𝑘]𝑛×𝑛{𝑢} = {

𝐹1
𝐹2
⋮
𝐹𝑛

}

𝑛×1

 (4) 

Hence, the acceleration at the point of the structure 
where the TLCGD is placed (usually the highest level 

of structure) will be obtained. Therefore, the TLCGD 
is analyzed as a one-degree of freedom system with an 
absolute acceleration, which is the result of the 

earthquake acceleration and the acceleration of the 
level where the TLCGD is placed. The corresponding 

TLCGD force will be obtained by multiplying the 
TLCGD mass by its absolute acceleration, which can 
be applied to the structure at the level where the 

TLCGD is placed. By applying the force 
corresponding to the TLCGD to the n-th level of the 
structure, in Eq. (4), the force term is changed as 

follows: 

{

𝐹1
𝐹2
⋮

𝐹𝑛 + 𝐹𝑇𝐿𝐶𝐺𝐷

}

𝑛×1

 (5) 

According to the description and equations presented 
above, the block designed in the Simulink for a wind 

turbine equipped with a TLCGD damper is obtained 
as shown in Fig. 1. It should be noted that the model is 
analyzed once as shown below to examine the 

performance of the damper in reducing vibrations for 
each load combination applied to the system. Once 
again, the other model is analyzed by cutting off the 

damper force path in the Simulink to perform a 
comparison between the mode with and without the 

damper.  
The numerical algorithm which is used in Simulink 
model, is Runge–Kutta method. In numerical analysis, 

the Runge–Kutta methods are a family of implicit and 
explicit iterative methods, which include the well-
known routine called the Euler Method, used 

in temporal discretization for the approximate 
solutions of ordinary differential equations. 
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Figure 1. The block designed in the Simulink for an offshore wind turbine equipped with TLCGD 

4. Artificial neural network
By observing biological systems and natural systems,
the scientists provide some descriptions for them.

These mathematical descriptions were then converted
into a series of computational blocks. These blocks
emerged in the form of neural networks, genetic

algorithms, particle swarm algorithms, etc., which are
called computational intelligence. The most important
feature of these algorithms is to inspire from nature

since the nature has chosen almost the best possible
solution due to having sufficient time [16].
The artificial neural network, which is a data

processing system, has been designed and introduced
with inspiring from the human brain in pursuit of
faster processing and solving the problems. In the

neural networks, data processing is handled by small
processors working together in an interconnected and
parallel network. The benefits of this artificial

network include the high speed and responding as
well as the ability to answer unanswered questions

based on experience and training. In other words, with
more data used to train the neural network, the neural

network will be trained more accurately and will 
experience less error when producing output [16]. 

Flood and kartam raised the use of artificial networks 
in civil engineering for the first time. In their paper, 
they used the popular form of the supervised 

progressive neural network. In this article, a graphical 
interpretation of the neural network was introduced 
for the first time. In fact, the purpose of this paper was 

to ensure the development of this technology in the 
civil engineering [17]. 
In those years, the artificial neural network was 

developed in areas such as optimization process, 
seismic hazard prediction, classification of non-

destructive evaluation signals, structural value 
estimation, etc. In recent years, the use of artificial 
neural networks and the optimization algorithms have 

drawn much attention in controlling the vibrations. In 
this regard, Leung et al. (2008) obtained the optimal 
TMD frequency and damping ratio for a one-degree of 

freedom structure under the non-fixed basic vibration 
using the Particle Swarm Fractional Algorithm (PSO) 
[18]. In another study in 2009, Leung and Zhang used 

the PSO algorithm to obtain the optimal parameters 
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for a one-degree of freedom structure under external 

loading and basic vibration modeled with the white 
Gaussian noise and provided formulas for these values 
[19]. Also, in 2011, Bekdas and Nigdeli used the 

Harmony Search (HS) algorithm to find optimal TMD 
parameters for a 10-story structure under the harmonic 
basic acceleration [20]. Moreover, in 2019 ANN was 

used for prediction the wave set-up in Iranian coasts 
[21]. 

4.1. Neural network data 
In this paper, it will be used the modeling and 
approximation feature of the neural network functions 

to estimate the reduction percentage of the response of 
an offshore wind turbine with TLCGD. This system is 
under different wave and wind excitations. Finally, 

frequency and mass of the TLCGD are optimized. 
Three offshore wind turbines simulated in the 

Simulink were placed under simultaneous 
stimulations caused by wind and wave. To this end, 
75 different loadings of wave and wind applied to the 

offshore wind turbines were used to optimize these 
parameters as follows. 

Table 1. Specifications of simultaneous wind and wave 
loadings 

Range Parameters 

8
𝑚

𝑠

2 𝑆𝑝𝑎𝑐𝑒𝑑
↔  24

𝑚

𝑠
𝑢𝑤𝑖𝑛𝑑  (Average Wind Speed( 

2𝑚
2 𝑆𝑝𝑎𝑐𝑒𝑑
↔  10𝑚 𝐻𝑤𝑎𝑣𝑒 (Significant Wave Height) 

8𝑠
4 𝑆𝑝𝑎𝑐𝑒𝑑
↔  16𝑠  𝑇𝑝𝑤𝑎𝑣𝑒  (Peak Wave Period) 

The optimization index is the reduction rate of the 
mean SD (standard deviation) of the structure 
response displacement at the level of damper 

placement for 75 different loadings compared to the 
absence of damper case. To increase the number of 

data for artificial neural network training as well as 
reducing the uncertainties, three values of 2%, 4%, 
and 8% were considered for the ratio of the mass of 

the damper to the mass of the structure (  ) and three 

values of 0.6, 0.7, and 0.9 for the ratio of the damper 

frequency to the frequency of the structure ( ). 
The data in the neural network is divided into three 

categories: 
1. Training data
2. Validation data

3. Testing data
A total of 2025 data were used to train the neural 
network. The information was provided based on the 

outputs of three offshore wind turbines under 75 
combinations of loading, which were obtained for the 

ratios of different masses and frequencies. Of this 
information, 70% was the share of training data, 15% 

of the validation data, and 15% of the experimental 

data share. 
The neural network takes a part of the data as 
questions and answers and teaches the neurons 

accordingly. Then, during the training, it provides the 
neurons some of the data unanswered to test the 
training process and uses a portion of the data in the 

end for the final test, which is not used in the training 
and validation processes. The similarity of validation 
data and experimental data is that for both, the data is 

given to the neurons unanswered. But the major 
difference between them is that the validation data is 
used during the training process to prevent data 

memorizing by neurons, while the test data is used at 
the end of the training process to evaluate the system's 
performance. The following parameters were used as 

inputs to train the neurons: 

 The frequency of the first mode of the offshore wind

turbine

 The ratio of the TLCGD mass to the structure mass

(μ =
𝑚𝑡𝑙𝑐𝑔𝑑

𝑀𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
)

 The ratio of the TLCGD frequency to the structure

frequency (α =
𝜔𝑡𝑙𝑐𝑔𝑑

𝜔𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
) 

Since the inputs are not of the same type, all the inputs 

and outputs data were normalized to better assess the 
performance of the neural network. Also, with trial 
and error process to get the best answer, finally, three 

hidden layers were used with each containing 10 
neurons and the one output layer was considered. It 
should be noted that, as shown in Fig. 2, the number 

of output layers is always equal to the number of 
outputs of the neural network. The output of the 
neural network is the percentage of reduction of the 

structure response in the mode with the damper 
compared to the mode without the damper. Thus, the 
user receives the performance rate of the TLCGD in 

reducing the structure response as output by entering 
some specifications of the offshore wind turbine and 
the TLCGD damper installed in it such as the 

frequency of the structure, the ratio of the damper 
mass and the ratio of the damper frequency. In other 
words, this process leads to the optimal design of this 

damper for a variety of wind turbines with different 
frequencies. Since if, for example, the percentage of 

reduction in the structure response, which is the 
output of the neural network, becomes negative or 
reduces, it means that the two main parameters of 

TLCGD, (  ) and ( ), are not properly selected. It 

implies that the damper function has been destructive 

or has not functioned properly. 
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Figure 2. Specifications of the artificial neural network input and output layers 

4.2. The results of artificial neural network 

Using the artificial neural network, the system could 
train the neurons well after about 12 iterations. As 

shown in Fig. 3, aimed at reducing the mean square, 
the system has well reduced the square errors in the 
training, validation and testing data. 

Figure 3. The trial and error process of the neural network for 

training the neurons 

This network is designed in such a way that in the 
absence of improvement up to six consecutive stages 
in the neural network training process, the algorithm 

will stop and the best answer to that stage will be 
identified. According to Fig. 4, a little improvement is 
seen in epoch 12 compared to epoch 11; but, after 

repeat 12, there are three stages of failure to improve 
compared to step 12. However, at the end of step 16, 
the system will perform better than the previous steps; 

and then, the 6 non-improvement steps will stop the 
training algorithm. Finally, the sixteenth epoch is 
selected as the best performance. In Fig. 4, mu is the 

control parameter for the algorithm used to train the 
neural network. Choice of mu directly affect the error 
convergence.  

Figure 4. The improvement steps of neural network training 

By training the neural network, the target values and 
the output of the neural network are compared as 

follows. 

Figure 5. Error Histogram Diagram 
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Figure 6. Comparing the correlation between the values of the reduction percentage of the actual response and the values obta ined 
from the neural network 

5. The use of ANN to optimize TLCGD

performance in OWT
In this section, to control the results obtained by the
artificial neural network, an offshore wind turbine
associated with a TLCGD damper with the

characteristics shown in Fig. 7 were was put under 75
combinations of load in the previous section; then, the

results obtained from Simulink were compared with
the results of the neural network. It should be noted
that the TLCGD specifications in this section were not

used in the neural network training. In other words,
the ratio of the mass and the ratio of the current
damper are not included in the ratios that were given

in the previous section as input to the neural network
system. In Fig. 7 the gas is located in the vertical
column and on the liquid. 

TLCGD is rigidly connected to the primary structure 

and the relative displacement of the primary structure 
and the secondary structure is zero. So the stroke 
which is due to the relative displacement of the TMD 

to the original structure is not the case in the TLCGD. 
However, in this damper the similar parameter to the 
stroke of the TMD, is the displacement of the fluid in 

the vertical column. Therefore, in this research, the 
height of the fluid in the vertical column is considered 
to be 1.5 m before the structural vibration. System 

analysis under wind and wave excitations showed that 
the maximum amplitude of displacement of the liquid 

in the vertical column is about 30 cm. Therefore, in 
designing the damper, it should be noted that the 
minimum total height of the vertical column of the 

damper is about 1.80 meters. 
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Figure 7. The structure characteristics to control the function of the neural network 

As seen in the figure above, new inputs (the damper to 

structure mass ratio and the damper to structure 
frequency ratio) have been applied in two different 
types to examine and control the neural network 

trained in the previous section. Thus, one of them is 
within the range of the network training inputs (IN) 
and the other is outside the range of data used as 

inputs for training the neural network (OUT). This 
was done to evaluate the performance of the artificial 
neural network not only for the known data but also 

for the data outside the network range and make a 
comparison between its results and the actual results. 
To investigate the function of the neural network, the 

reduction rate in the response of the structure along 
with the damper obtained from the neural network, 

which has been under the influence of 75 different 

loadings for three different types of turbines (in 

different depths of water) were compared with the 
actual results obtained from the Simulink model. In 
Figure 8, this comparison can be seen for 75 different 

load combinations. 
The structure of the offshore wind turbine is in 
interaction with the soil that can affect its behavior. 

This effect increases or decreases in the period of the 
structure. Therefore, since the purpose of the paper is 
parametric studies, rather than a case study, different 

types of OWTs with different periods are considered 
to evaluation the effects of different types of soil 
which interaction with structure. 
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Figure 8. Comparison of the actual percentage reduction of the structure response with the damper with the percentage obtained 
from the neural network for 75 load combinations of different simultaneous wind and wave 

Also, for a better understanding, the mean, standard 
deviation and the effective value (RMS (root mean 

square)) of Figure 8 diagrams are presented for two 
types of parameters inside and outside the neural 

network training range in Tables 2 and 3 to determine 
the error percentage of the neural network results 

compared to the actual results. 

Table 2. Comparison of actual results (Simulink output) and artificial neural network for the state within the training range 

IN [(Mass ratio ( 𝜇) = 6% and Frequency ratio ( 𝛼)=0.8 ] 

Mean of 
 response reduction(%) 

St. Dev. of  
response reduction(%) 

RMS of  
response reduction(%) 

Type of 
Structure 

Real 
(Simulink)  

ANN Error Real 
(Simulink)  

ANN Error Real 
(Simulink)  

ANN Error 

OWT-A (50m) 16.37 15.68 4.21 3.42 3.71 8.57 16.72 16.11 3.65 

OWT-B (70m) 20.53 19.95 2.82 6.76 6.77 0.11 21.60 21.06 2.53 

OWT-C (100m) 21.07 20.80 1.29 6.81 7.47 9.70 22.13 22.09 0.21 

Table 3. Comparison of actual results (Simulink output) and artificial neural network for the off-range training 

OUT [(Mass ratio ( 𝜇) = 1% and Frequency ratio ( 𝛼)=1.0 ] 

Mean of 
 response reduction(%) 

St. Dev. of  
response reduction(%) 

RMS of  
response reduction(%) 

Type of 
Structure 

Real 
(Simulink)  

ANN Error Real 
(Simulink)  

ANN Error Real 
(Simulink)  

ANN Error 

OWT-A (50m) 
13.56 13.73 1.19 2.8702 2.2231 22.55 

13.86 13.90 0.30 

OWT-B (70m) 
15.34 14.52 5.37 5.1519 3.6678 28.81 

16.17 14.97 7.45 

OWT-C (100m) 
14.71 14.24 3.25 6.3003 4.3601 30.80 

15.99 14.88 6.94 
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According to the above tables and Fig. 9, we realize 

that the proposed neural network has yielded very 
favorable results for a new input within the range of 
the training input parameters. Thus, the mean error 

percentage, the standard deviation and the effective 
value of the neural network with actual values are 
below 10% for all three types of the structure. But the 

results are associated with more errors for a new input 
outside the range of input parameters of the training of 
the neural network. However, these error values are 

still below the 10% in case of average percentage 
error rate and the effective value; but, the mean 
percentage error related to the standard deviation is 

about 20 to 30 percent. The noteworthy point here is 
that the selected input outside the training range has a 
damper to structure frequency ratio of 1 associated 

with the resonance phenomenon. Therefore, one can 
see that the neural network, despite the fact that it 

does not know the cause of the phenomena occurred, 
provides acceptable results even in the presence of an 
unusual phenomenon. 

Figure 9. The percentage error rate of the artificial neural 

network method compared to the actual results obtained from 
Simulink 

6. Conclusions
In this paper, we tried to provide a new method based
on artificial neural network for examining the optimal
TLCGD damper parameters for an offshore wind

turbine under the provocations of wave and wind. By
considering offshore wind turbines at different depths
and combining different simultaneous wind and wave

loads, the uncertainties were reduced in obtaining the
optimal parameters. As the forces applied to the
offshore wind turbine caused by the wave and the

wind (especially the wind due to the PITCH control
system inside its rotor) have their own intricacies that
the regular trend governing the behavior of this type

of structure along with the damper cannot easily be
determined, the results showed that the neural network
was able to somehow detect this behavior and predict

the reduction rate of the structure response in the
presence of damper according to this model. This will

determine the optimal TLCGD parameters for use in
different types of offshore wind turbines with
different depths and periods. In fact, the importance of

using this template is revealed based on the fact that in

defining an analytical or empirical relationship, the 

impact of some factors has not yet been identified or 
has been simplified due to the complexity of the 
behavior. However, by using the neural network, 

without the need for a complete understanding of the 
parameters affecting the TLCGD behavior in an 
offshore wind turbine, these factors are considered 

indirectly in the prediction of the damper behavior. In 
this study, to control the accuracy of the neural 
network performance, two new input categories, 

including two main parameters of the damper, namely 
the mass ratio and the frequency ratio, were given to 
the neural network so that the results can be compared 

with the actual results of the structure analysis in the 
Simulink model. These new values were chosen in 
such a way that, firstly, there will be no recurrent 

input with the training data of the neural network. 
Secondly, a bunch of these inputs was outside the 

range of the neural network training. The results 
indicated that the neural network has an acceptable 
error rate compared to the actual results in both 

categories of inputs. However, this error rate was 
higher for the category beyond the scope of training, 
which is normal. Therefore, the method presented in 

this study can be used practically to determine the 
optimal parameters of the TLCGD, which will lead to 
a good design for its use in the offshore wind turbines. 
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