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This study aims to investigate the capability of two common numerical 
methods, Homotopy Analysis Method (HAM) and Variational Iteration Method 
(VIM), and to suggest more efficient approximate solution method to the 
governing equations of nonlinear surface wave propagation in shallow water. 
To do so, semi-flat, moderate, and sharp slope of shore which are connected to 
an open ocean with a uniform depth are exposed to a solitary wave with initial 
wave height H=2 and stationary elevation d=20. Then, the surface elevation and 
velocity curves for these profiles are determined and compared by HAM and 
VIM.  To verify the numerical modeling, two slopes i.e. semi-flat and moderate 
slope are considered and modeled in Flow-3D. Afterwards, the results of surface 
elevations are compared to each other by using correlation coefficient. The 
correlation coefficients for the slopes represent that the results coincide well. 
Ultimately, although the results of both methods are quite similar, using HAM 
is highly recommend rather than VIM since it makes solution procedure fast-
converging and more abridged. 
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1. Introduction
Tsunamis are sea surface gravity waves generated by
large-scale underwater disturbances. There are several
stimuli that instigate these long waves: seismic
displacement of seabed, volcanic eruptions, landslides,
impact of large objects (such as astronomical objects)
into the sea surface, and underwater explosions. As a
result of these impulsive disturbances, water column—
from the bottom to the free surface—is set in motion
[1]. During the past era, waves like Tsunamis have
imposed lots of irrevocable damages. Therefore,
proposing numerical solutions for governing equations
of waves has become a common practice in order to
forecast waves more accurate [2-3]. For this purpose,
several solution methods have been suggested, which
Variational Iteration Method (VIM) and Homotopy
Analysis Method (HAM) are almost the most common
ones among them.
The concept of VIM stems from the studies performed
by He in 1990s. According to these studies, VIM is an
iterative based approach which does not need the
presence of small parameters in the differential
equation and is widely used for solution of nonlinear
ordinary and partial differential equations. Therefore,
this method has frequently been used and known as a
reliable tool for solving linear and nonlinear wave

equations [4]. In 2006, Yusufglu et al applied VIM in 
order to regularized long wave equation [5]. In 2007, 
Hemeda used VIM for the wave equations in different 
forms i.e. first-order of wave equation in one- and two-
dimension and second-order of wave equation in one- 
and two-dimension. Then, the results showed the 
effectiveness of this method [6]. In 2011, Mohyud-Din 
et al used the modified form of VIM to assess 
propagation of solitary wave by solving seventh order 
generalized Kdv (SOG-Kdv) equations [7]. In 2012, 
Younesian et al solved nonlinear wave propagation in 
shallow water media by VIM [8]. 
The ideas of HAM in topology was presented by Liao 
in 1992 in response to nonlinear wave problems. 
According to this study, it was claimed that the 
advantages of HAM outweighed other classical 
methods. The major advantage of this method is being 
independence of any small or large quantities. 
Therefore, HAM can be applied to governing equations 
and boundary/initial conditions containing whether 
small or large quantities. In addition, apart from 
providing more accurate and optimized solution 
without any physical and unrealistic assumptions, the 
numerical solution of HAM always becomes 
convergent since this method provides a family of 
solution expressions in the auxiliary parameter of ℏ 
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which makes the convergence region and rate of each 
solution convenient[9-16]. 
There are a lot of attempts made by means of HAM to 
solve waves equations with different aims. In 2004, Wu 
et al applied HAM to solve solitary waves governed by 
Camassa-Holm equation and provided a new analytical 
approach to solve soliton waves with discontinuity at 
crest [17]. In 2009, Yusufoglu et al performed HAM to 
solve Modified Equal Width Wave (MEW) equation 
and proposed this method as an efficient method for 
solving MEW equation [18]. In 2013, Shaiq et al 
recommended HAM as an accurate and reliable 
algorithm for time-fractional nonlinear wave-like 
equations which are significantly important in 
engineering issues [19]. In 2013, Araghi et al used 
HAM to solve Schrodinger equation with a power law 
nonlinearity [20]. In 2014, Izadian et al utilized a new 
approach with a fast and global quadratic rate of 
convergence for solving nonlinear wave equations by 
HAM and Newtown method [21].  In 2015, Yin et al 
used a modified form of HAM for solution of fractional 
wave equations and proposed this method as a powerful 
tool to adjust and control the convergence region of 
infinite series solution by using an auxiliary parameter 
[22].  
According to the previous studies, it is claimed that 
both HAM and VIM could be used as efficient 
approaches in solving nonlinear equations. Therefore, 
this study aims to discuss the procedure of HAM 
approach and compare this method to VIM in order to 
investigate which method is more efficient. To do so, 
three different slopes: semi-flat, moderate, and sharp 
slope are firstly considered, and governing equations 
are solved by two algorithms. Secondly, the results of 
HAM are compared to the results of VIM approach. 
Then, the examples which are solved by both methods 
are verified by Flow-3D. Finally, although the 
responses obtained by HAM and VIM are similar, 
comparing the time lapse of both methods reveals that 
HAM reaches to convergent state with a lower 
computational load and never discretizes.  

2. Governing Equations of nonlinear wave
propagation
Tsunamis are generally classified as long waves.
Solitary waves or combinations of negative and
positive solitary-like waves are often used to simulate
the run-up and shoreward inundation of these
catastrophic waves.
The following equations display the specific case of the
run-up of 2D long waves incident upon a uniform
sloping beach connected to an open ocean with a
uniform depth (Figure 1). The related classical
nonlinear shallow-water equations are shown as Eq.
(1):

( ( )) 0t xu h     (1) 
0t x xu uu g  

where   is wave amplitude, u  is depth averaged 
velocity, h  is variable depth, and g .  is acceleration 
of gravity. In addition, the initial condition of these 
wave is generally represented by Eq. (2):  

  2
3

3,0 sech
4

Hx H x
d

 
(2) 

 ,0u x gd
d




where H  and d  denote the initial wave height and 
stationary elevation, respectively [1,8]. 

2.1. The basic idea of Homotopy Analysis 
Method (HAM) 
To show the basic idea of HAM, the following 
procedure is considered. At first, differential equation 
is considered as Eq. (3): 

 [ , ] 0x t  (3) 

Where   is a nonlinear operator, x  and t  represent 
the independent variables, and   is an unknown 
function. Then, all boundaries or initial conditions are 
ignored for simplicity, and the deformation equation 
which is so-called zeroth-order deformation equation is 
constructed Eq. (4). 

     0  1-q x,t;q -ω x,t =  q [ (x,t;q)]       (4) 

Where    0,1 q   is the embedding parameter, ℏ≠ 0 is an
auxiliary parameter,   is an auxiliary linear operator, 
 , ;  x t q is an unknown function,  0 ,x t  is an initial 

guess of  ,x t , and  , ;x t q  is an unknown
function. It is obvious when q , the embedding 
parameter, is equal to 0 and 1, Eq. (4) becomes Eqs. 
(5): 

   0, ;0 ,x t x t 

   , ;1 ,x t x t 
(5) 

respectively. Thus, asq increases from 0 to 1, the 
solution varies from the initial guess ߱଴(ݔ,  to the (ݐ
solution  ,x t . Expanding  , ;x t q  in Taylor
series when q is equal to 1 will be Eq. (6): 

ηx
h
(

H 

d 

Figure 1. Definition Sketch for solitary wave run-up 
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     0
1

, ; , , m
m

m

x t q x t x t q  




  (6) 

Where 

   
0

, ;1,
!

m

m m

q

x t q
x t

m q









(7) 

The convergence of the series in Eq. (6) depends upon 
the auxiliary parameter ℏ. If it is convergent at 1q  , it 
will be Eq. (8): 

     0
1

, , ,m
m

x t x t x t  




  (8) 

Which must be one of the solutions of the original
nonlinear equation, as proven by Liao. Then, n


 is 

defined as Eq. (9): 

     0 1( , , , , , , )n nx t x t x t    


(9) 

Therefore, the following mth-order deformation 
equation is obtained by differentiating Eq. (3) m-times 
with respect to q , dividing them by !m , and finally 
setting 0q  . Then, we have Eq. (10): 

   -1 -1, - , ( )m m m m mx t x t R       


 (10) 

Where 
-1

-1 -1
0

1 [ ( , ; )]( )
!

m

m m m
q

N x t qR
m q












(11) 

And 

0,  1 
1,  1m

m
m




 


(12) 

It should be emphasized that  ,m x t  for 		 1m   is 
governed by the linear equation of Eq. (10) with linear 
boundary conditions coming from the original 
problem, which can be solved by the symbolic 
computation software such as Mathematica or Maple. 
To perform HAM, the following initial approximations 
Eqs. (13) are considered: 

    2
0 3

3,0 ,0 sech
4

Hx x H x
d

  
(13) 

   0 ,0 ,0u x u x gd
d


 

And the linear operator is defined as Eq. (14): 

   , ;
, ; , 1,2i

i i

x t q
x t q i

t





     
 (14) 

According to Eq. (1) nonlinear operators 1 and	 2
can be defined as Eqs. (15): 

     1
1 1 2

, ;
, ; , , ;

x t q
x t q x t q

t


 


     


       1 2 2( , ; , ; ) ( , ; )x t q x t q h x x t q
x x

   


 
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     2
2 1 2
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, ; , , ;

x t q
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

 


     


   2 1
2

, ; , ;x t q x t q
g
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 


 


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Then, zeroth-order deformation equations are 
constructed as Eqs. (16): 

       1 1 0 1 1 1 2(1-q) x,t;q -η x,t =q x,t;q , x,t;q         

       2 2 0 2 2 1 2(1-q) x,t;q -u x,t =q x,t;q , x,t;q         

 (16) 
Obviously, when 0q   and 1q  , we have Eqs. (17): 

   1 0, ;0 ,x t x t  ,    1 , ;1 ,x t x t 

   2 0, ;0 ,x t u x t     2 , ;1 ,x t u x t   (17) 

Thus, as the embedding parameter q  increases from 0 
to 1,  1 , ;x t q  and  2 , ;x t q  vary from the initial 

approximations of  0 ,x t  and  0 ,u x t  to  ,x t

and  ,u x t  solutions, respectively. By expanding

 1 , ;x t q  and  2 , ;x t q in Taylor series with respect 
to q, we have Eqs. (18) and Eqs. (19): 

     1 0
1

, ; , , m
m

m

x t q x t x t q  




 
(18) 

     2 0
1

, ; , , m
m

m

x t q u x t u x t q




 
Where 

   1

0

, ;1,
!

m

m m

q

x t q
x t

m q









(19) 

   2

0

, ;1,
!

m

m m

q

x t q
u x t

m q









If the auxiliary linear operator, the initial 
approximations, and the auxiliary parameters 1  and 

2  are so properly chosen, the above series converge at 
1q  . Then, we have Eqs. (20): 

     0
1

, ; , ,m
m

x t q x t x t  




 
(20) 

     0
1

, ; , ,m
m

u x t q u x t u x t




   
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Which must be one of solutions of original system. 
Afterwards, the following vectors Eqs. (21) are 
defined: 

     0 1( , , , , , , )n nx t x t x t    


 
(21) 

     0 1( , , , , , , )n nu u x t u x t u x t 


And the mth-order deformation equation, Eq. (22), is 
obtained: 

    1 -1 1 1, -1 -1, - , ( , )m m m m m mx t x t R u      
 




 (22) 

Now, the solution of the mth-order deformation 
equation, Eq. (22), for 1m   is Eqs. (23): 

   -1 1 1, -1 -10
, , ( , )

t

m m m m m mx t x t R u ds     
 




(23) 
   -1 2 2, -1 -10

, , ( , )
t

m m m m m mu x t u x t R u ds   
 

According to the initial conditions which are initially 
assumed, we have Eq. (24): 

 ,0 0m x   ,  ,0 0mu x  (24) 

1, 1 1( ,m m mu  

 
 ) and  2, 1 10

,
t

m m mu  
 

  are: 

 

 

1
1

1, 1 1 1
0

1

,
m

m
m m m n m n

n

m

u u
t x

h x u
x


 




   




  
      





 


 (25) 

 
-1

-1 -1-
2, -1 -1 -1

0

,
m

m m n
m m m n m

n

u uu u g
t x x

 


   
      


 

 . 

Obviously, the solution of the mth-order deformation 
equations, Eq. (22), for  1 m   becomes: 

 -1
-1 1 1, -1 -1[ , ]m m m m m mu     

 
   

 -1 ,-1 2 2, -1 -1u u h L R um m m m m m      

 
 

(26) 

To make the solution method more simple, h1 and h2 are 
assumed equal to h.  

2.2. The basic idea of Variational Iteration Method 
(VIM)  
To show the procedure of VIM, the correction 
functional is constructed at first as Eq. (27) and Eq. (28) 
[8]: 

     
˙

1 0
-   

t

n n n nu t u t u E d 
   
  	(27) 

     
˙

1 0
-     

t

n n n nt t F d    
   
   (28) 

Where ܧ௡ and ܨ௡ are : 
' '

n n n nE u u g          (29) 

'( ( ))n n nF u H    (30) 

The corresponding first-order iterations are obtained 
by Eq. (31) and Eq. (32):  

 
˙

' '
1 0 0 0 00

-   
t

nu u t u u u g d      
 

 ' '
0 0 0 0-u u u g t  (31) 

 
˙

'
1 0 0 0 00

'
0 0 0

-   ( ( ))    

 - ( ( ))

t
t u H d

u H t

    

 

     
 



  (32) 

The second-order approximations are: 

 
˙

' ' ' '
2 0 0 0 0 1 1 1 10

- -   
t

u u u u g u u u g d        
 

  
2

' ' ' '
0 0 0 0 0 0 0 0[-    [  

2
tu t u u g u u u g u      

  
3

' ' ''
0 0 0 0 0 ( ))  

3
tu u g g u H      

  '' ' '
0 0 0 0 0- ( ]u u g u u g     (33) 

 
˙

' '
2 0 0 0 0 0 00

 - ( ( )) -   ( ( )) -
t

u H t u H d          
 

 
˙

' '
1 1 1 0 00

  ( ( )) [- -
t

u H d t u H          
 
    

2 '' ' '
0 0 0 0 0 0 0 0]  [ '( ))  

2
tu H u u H H u u g         

     ''' ' '
0 0 0 0 0 0 0' '  ]u u H H u u g      

    
3

' ' ' ' ''
0 0 0 0 0 0 0 0 0 0 -  ( ) '- ( ')( )) ]

3
t u u g u H u u g u H        

 (34) 

Then surface elevation and velocity profiles are 
obtained after substituting the general initial conditions 
(Eq. (2)) into Eq. (35) and Eq. (36). 

2 2 5 2
2 sech 2 ( sech ( )sinh ( )u B x t B x x     

2
3 3 2 8 2- sinh sech ( ) - 2 sech ( )cosh ( )

2
tgA B x x     

2 2 6 22 sec )sin( ) - 6 sech ( )gAB x x gAB x    
2 2 2 4 2cosh ( ) - 2 cosh ( )sech ( ) 6x gB H x x gB H    

 4 2 '' 2 2sech ( ) sinh ( ) sech ( ) 8x x BgH x g        
2 6 3sinh ( ) sech ( ) - 4 sinh( )sech ( )AB x x BH x x     

3
3 4 3 11 3 2 2[-8 sinh ( )sech ( ) - 8 sinh ( )

3
t B x x g AB x    

9 4 4 9 4 4sech ( ) 4 sech ( )sinh( ) -12x B x x B    
11 2 3 2 7sech ( )sinh ( ) 8 sech ( )sinh( ) -x x g AB x x    

3 9 2 2 324     sech ( )sinh ( ) 4g AB x x Ag     
7 2 3 2 5sech αxsinh(αx)-12g α A sech (αx)sinh(αx)]         (35) 
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And 
2 5

2 sech ( ) [-4 sinh( )sech ( )A x t AB x x      
3 2 2-2 sinh( )sech ( ) sech ( )ABH x x BH x t     

 2 2 2 2 2 2 2 2 2[ -8 -16 -12 - 6AB AB AB AB    

 8 2 2 2 2 2 2sech ( ) 36 - 20 -10x AB B g A g   

 6 2 2 4sech ( ) 16 - 6 sech ( )x B Ag H x    

 2 2 6 2 5-20 sech ( ) - 8 sech ( )sinh( )B H x B H x x     
3 2 2-2 sech ( )sinh( ) 4HAα gsech (αx)]A gH x x   

 (36) 

3. Numerical experiments
Now that the procedures of HAM and VIM have been
discussed, three different examples with different
profile shores (i.e. semi-flat, moderate, and sharp
slopes) are modeled as follow by aforementioned
approaches. Then, the following examples are exposed
to a solitary wave with initial wave height 2H   and
stationary elevation 20d   [8]. Then, the results
which are determined by HAM are compared to those
obtained by VIM [23].

3.1. Semi-Flat Shores 
For modeling a semi-flat shore, the below shore 
profile is firstly considered Eq. (37): 
  0.2 20h x x   (37) 

Then, the elevation profile Eq. (40) and surface 
elevation Eq. (41) are obtained by the following 
analytical expressions for HAM after initial amounts of 

 0 ,  x t and  0 ,u x t are determined by Eq. (38) and
Eq. (39): 

   20 ,  2 sech 0.0137x t x  (38) 

   20 , 1 .4007 sech 0.0137u x t x (39)

   
 

2
1

2

,  0.1534  ( 1.8257  0.0137

5  0.0136  0.0137 0.05  

x t t sech x

sech x tanh x x

   

   



 
. 

     2 4 0.0137  0.0137  0.0137sech x tanh x sech x 

  0.0137 )tanh x         

(40) 

The rest of the components of the iteration formulas by 
HAM can easily be obtained by symbolic computation 
software. Subsequently, the following approximate 

solutions in term of a series up to 4th-order for 
4

0
i

i

 


  

and 
4

0
i

i

u u


  	are obtained. The series solutions

contain the auxiliary parameter  . The validity of the 

method is based on assumption that the series of Eq. (6) 
converges at 1q  . In a essence, It is the auxiliary 
parameter   which ensures that this assumption can be 
satisfied. As it was pointed out by Liao, in general, by 
means of the so-called  -curve in Figures 2 and 3, it is 
straightforward to choose a proper value of   which 
results in convergence of the series. In addition, Liao 
mentioned that the valid region of   is a horizontal line 
segment [13]. So, 1   is chosen in following 
computational works. 
After the series become converged in HAM, the 
equations are solved on the bases of VIM approach as 
follows, and the results are shown in figures 4-7. 
The solutions of VIM for  2 ,u x t and	  2 ,x t  can be 
obtained by the following analytical expressions Eq. 
(42) and Eq. (43):

 2
2 1.400714 0.013693 2u sech x t  

   3(0.2686566sinh 0.013693 sech 0.013693x x

   50.02686566sinh 0.013693 cosh 0.013693 )x

 2 8( 0.00367014 0.013693 0.07407t sech x  

(42) 

 2
2 2 0.013693 [0.15336sech x t     

   5sinh 0.013693 0.013693 0.280143x sinh x  

   2 0.013693 0.007672 0.013693sech x xsinh x   
 3 0.013693 0.7672sinh(0.013693)sinh x 

    30.05373 0.013693 sinh 0.013693sech x x   
   50.021492 0.013693 sinh 0.013693sech x x  

 60.00007375 0.013693 0.0016186xsech x x 

 4 0.013693 ]sech x

(43) 

In Figures 4 and 5, graphical solutions of  ,x t and

 ,u x t are represented. The elevation and velocity
profiles are illustrated versus time and position in 
Figures 6 and 7. By comparing these figures, it is 
concluded that HAM and VIM solutions are exactly 
similar. 

Figure 2. The   -curves according to 4th-order approximation. 
Dashed point:  0.1,0.1η  , solid line:  0.1,0.1η   , and dashed

line:  
¨

0.1,0.1η  . 

  2
1 , -0.0537  (10  sech [0.0137 ]u x t t x 

4tanh[0.0137 ]   sech [0.0137 ] tanh[0.0137 ])x x x
(41)



Mohsen Soltani, Rouhollah Amirabadi / Introducing Homotopy Analysis Method (HAM) as an efficient tool in solving the Nonlinear Wave Propagation 
Equations in Shallow Water 

42

Figure 3. The ℏ -curves according to 4th-order approximation. 
Dashed point:  0.1,0.1u  , solid line:  0.1,0.1u   , and dashed

line:  
¨

0.1,0.1u  .

Figure 4. HAM and VIM solutions of  ,η x t  and  ,u x t  for

semi-flat shore, 0.3t  and 0 100   x   

Figure 5. HAM and VIM solutions of  ,η x t  and

 ,u x t  for semi-flat shore, 30x  and 0 1   t  .

Figure 6. HAM solution of  ,η x t   for semi-flat shore

Figure 7. HAM solution of  ,u x t  for semi-flat shore

3.2. Moderate-Slope Shores 
for modeling a moderate-slope shore, the below shore 
Eq. (44) profile is firstly considered: 

  100h x x  (44) 

Then, the elevation profile Eq. (47) and surface 
elevation Eq. (48) are obtained by the following 
analytical expressions for HAM after initial amounts of 
,ݔ)଴ߟ ,ݔ)଴ݑ and (ݐ  .are determined (Eq. (45) and Eq	(ݐ
(46) ):

   2
0 ,  2 0.0137x t sech x  (45) 

   20 , 1 .4007 sech 0.0137u x t x (46) 

  2
1η x,t =-0.1534 t ×(-9.12871  sech [0.0137x]

2-25  sech [0.0137x] tanh[0.0137x]
 2+0.25 x  sech 0.0137x  tanh[0.0137x]

 4+  sech 0.0137x  tanh[0.0137x])

(47) 

   2
1 , 0.0537  (10  0.0137u x t t sech x  

   40.0137   0.0137tanh x sech x

  0.0137 )tanh x
(48)
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The auxiliary parameter of ℏ is considered equal to -1, 
and the series will be expanded up to 4th-order. After 
the series become converged in HAM, the equations 
are solved on the bases of VIM approach by the 
following analytical expressions Eq. (49) and Eq. (50): 

 2
2 1.400714 0.013693 2u sech x t 

   3(0.2686566sinh 0.013693 0.013693x sech x   
   50.02686566sinh 0.013693 0.013693 )x cosh x

 2 8( 0.00367014 0.013693t sech x   
   4 20.013693 0.515287 0.013693sech x sech   

   30.3766313 0.013693 sinh 0.013693sech x x   
 20.00515288 0.013693 0.007729xsech x x     

 4 0.013693sech x  

(49)

 2
2 2 0.013693 (0.15336sech x t  

   5sinh 0.013693 0.013693x sech x   
 21.4007 0.013693 3.836sech x    

   3sinh 0.013693 0.013693x sech x    
 60.34433 0.013693 0.83875sech x    

   4 20.013693 0.735 0.013693sech x sech x

 20.00735 0.013693 0.26865xsech x 

   3 0.013693 sinh 0.013693sech x x

 60.00367875 0.013693 0.008093xsech x x 

 4 0.013693sech x         

(50)

Then, the results are shown in figures 8-11. In Figures 8 
and 9, the graphical solutions of  ,x t and  ,u x t are
represented. And also, the elevation and velocity profiles 
are illustrated versus time and position in Figures 10 and 
11. By comparing these figures, it is concluded that HAM
and VIM solutions are exactly similar.

Figure 8. HAM and VIM solutions of  ,η x t  and  ,u x t
for moderate-slope shore at 0.3t  in 0 100   x  . 

Figure 9. HAM and VIM solutions of  ,η x t   and

 ,u x t  for moderate-slope shore at  in 0 1   t  . 

Figure 10. HAM solution of  ,η x t  for moderate-slope shore

Figure 11. HAM solution of  ,u x t  for moderate-slope
shore 

3.3. Sharp-Slope Shores 
For modeling a sharp-slope shore, the below shore 
profile is firstly considered: 

  5 500h x x  (51)
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Then, the elevation profile Eq. (54) and surface 
elevation Eq. (55) are obtained by the following 
analytical expression for HAM after initial aunts of 
η଴(x, t) and ݑ଴(ݔ,  .are determined by Eq.  and Eq	(ݐ
(53): 

  2
0η x,t = 2 sech[0.0137x] (52) 

	    20 , 1 .40071 0.0137u x t sech x (53) 

  2
1η x,t = -0.1534 t (-45.6435  sech [0.0137x]  

2-125  sech [0.0137x] tanh[0.0137x]+1.25 x  
 
 

2

4

sech 0.0137x  tanh[0.0137x]+

 sech 0.0137x  tanh[0.0137x])

(54)

  2
1u x,t =-0.0537 t (10  sech [0.0137x]

4tanh[0.0137x]+  sech [0.0137x] tanh[0.0137x])
(55)

The auxiliary parameter of ℏ is considered equal to -1, 
and the series will be expanded up to 10th-order. After 
the series become converged in HAM, the equations 
are solved on the bases of VIM approach by the 
following analytical expressions Eq. (56) and Eq. (57): 

 2
2u =1.400714sech 0.013693x +2t

   3(0.2686566sinh 0.013693x sech 0.013693x

 2 8)×t (-0.00367014sech 0.013693x -0.07407

   6 4sech 0.013693x +3.9265sech 0.013693x

 2-2.57643sech 0.013693x -1.883156

   3sech 0.013696x sinh 0.013693x +

 20.0257644xsech 0.01363x -0.0386465x
4sech (0.013693x)  

(56) 

 2
2η =2sech 0.013693x +t(0.15336  

   5sinh 0.013693x sech 0.013693x

 2-7.00357sech 0.013693x +0.1918x

   3sinh 0.013693x sech 0.013693x

   3-0.1918sinh 0.013693x sech 0.013693x +

 2 8t [-0.0101545sech 0.013693x +1.81583

   6 4sech 0.013693x -4.076sech 0.013693x

 2-1.861sech 0.013693x +0.03675x

   2 3sech 0.013693x -1.34325sech 0.013693x

 5sinh(0.013693x)-0.5373xsech 0.013693x

 6sinh(0.013693x)-0.018393xsech 0.013693x
4-0.040465xsech (0.013693x)

(57) 

Then, the results are shown in figures 10-13. In figures 
10, the graphical solutions of  ,x t  and  ,u x t are

represented. And also, the elevation and velocity 
profiles are illustrated versus time and position in 
figures 12 and 13. By comparing these figures, it is 
concluded that HAM and VIM solutions are similar. 

Figure 10. HAM and VIM solutions of ( ,η x t ) and 

 ,u x t  for sharp-slope shore at 0.3 t  in

0 100   x  

Figure 11. HAM and VIM solutions of ( ,η x t)  and  ,u x t
for sharp-slope shore at  in 0 1   t  . 

Figure 12. HAM solution of  ,η x t  for sharp-slope shore
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Figure 13. HAM solution of  ,u x t  for sharp-slope shore

4. Model verification
To verify the numerical models, two aforementioned
slopes (semi-flat and moderate-slope shore), as
examples, are selected and modeled in Flow-3D, and
,࢞)ࣁ ࢚)s are shown in figures 16-17 at t=0.3s for them. To
compare the software and numerical results to the
numerical results, correlation coefficients for each slope
are obtained by Eq. (58) and shown in figures 17-19.

Figure 16. Flow-3D solutions of  ( ,η x t)  for semi-flat shore 
at 0.3 t  in 0 100   x   

Figure 17. Flow-3D solutions of ( ,η x t)  for moderate-slope 
shore at 0.3 t  and 0 100   x   

2 2

( )( )
( ) ( )

i i

i i

x x y yCC
x x y y

  


 
 (58) 

Where x  denotes the measured values from the 
numerical model and y is the measured values from 
flow 3D model. The value of cc=1 shows that two 
variables are exactly the same. 

Figure 18. coefficient correlation of ( ,η x t)   between 
Flow-3D and numerical model  results for semi-flat shore at 

0.3 t  in 0 100   x  . 

Figure 19. coefficient correlation of ( ,η x t)   between 
Flow-3D and numerical model  results for moderate slope 

shoreat 0.3 t  in 0 100   x  . 

Conclusions 
In this paper, the Homotopy Analysis Method (HAM) 
is applied to show the efficiency of this solution 
method in solving nonlinear surface wave propagation 
equations in shallow water. For this purpose, three 
shore profiles including semi-flat, moderate-slope, and 
sharp-slope shores are modeled by HAM and compared 
to the results obtained by Variational Iteration Method 
(VIM). The comparison represents that the results of 
both methods well coincide. However, it is remarkable 
to mention that HAM approach never discretizes, and 
using HAM rather than VIM provides a convenient 
solving method to control the convergence of 
approximation series, which is shown and observed 
during the solution process. Furthermore, as it is 
represented in the procedure of HAM, this method is 
more abridged and is not affected by computation 
round off errors. Ultimately, since the advantage of 
HAM outweighs VIM, HAM is highly recommended 
for solving the governing equation in shallow water in 
order to hind cast surface elevation and velocity of 
tsunami events at desired time and location.  
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