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Smoothed Particle Hydrodynamic (SPH) is an attractive Lagrangian tool for 

simulating flows with large displacement at free surface boundary. Two 

widely used subcategories of this method are Weakly compressible SPH 

(WCSPH) and truly Incompressible SPH (ISPH) methods. Each method has 

its individual advantages while there is not yet a global agreement about the 

preference of one method to another one. In this study, accuracy, stability 

and efficiency of these methods are compared in simulating dam break flow 

as a well-known hydraulic problem. To decrease unrealistic particle 

fluctuation especially at free surface boundary, a practical solution is 

applied to both methods while keeping their total accuracy. In addition, 

different solid boundary treatments are studied and their effect on total 

accuracy and stability of SPH methods are investigated.  

Based on the results, both ISPH and WCSPH methods can model free 

surface profiles properly if a proper solid boundary treatment is utilized. 

Meanwhile, local surface fluctuations can be damped in both methods 

efficiently by means of the modified surface viscosity.  

By means of original versions, it is concluded that ISPH method is 

generally more stable and more accurate particularly in modeling pressure 

field than WCSPH method. In addition, it is shown that ISPH method is 

faster than WCSPH method in solving a dam break flow with equal number 

of particles. On the other hand, ISPH in its original version using the 

divergence-free velocity scheme suffers from density loss problem. Since a 

lot of modifications have been introduced till now to overcome defections 

of both methods, it is not fair to compare methods with different 

modifications and therefore, similar modifications are applied in this study. 

Meanwhile, it can be concluded that each method is growing and is going 

its own way through enhancement. 
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1. Introduction
The Smoothed Particle Hydrodynamics (SPH) method

is a particle method in Lagrangian coordinate that was

originally introduced for the astrophysics by

Monaghan (1992). Large deformations at free surface

boundaries can be modeled efficiently by Lagrangian

particle approaches and contrary to the Eulerian grid

approaches, no numerical diffusion occurs in

Lagrangian methods due to solving advection term

directly. In addition, free surface profile can be easily

traced via this method. At first, Weakly Compressible

SPH (WCSPH) method applied to the fluid mechanics

by Monaghan and Kos (1999) and later,

Incompressible SPH (ISPH) method introduced by

Shao and Lo (2003) based on a semi-implicit

projection method. Gomez-Gesteira et al. (2010a) 

present the state-of-the-art of classical SPH for free 

surface flows and examined some improvement 

methods to classical SPH, especially for dam break 

problems. In WCSPH method, fluid is assumed 

compressible while incompressibility is ensured by 

means of pressure adjustment via equation of state. 

Lee et al. (2008) showed the efficiency of ISPH 

method particularly in improving the pressure field in 

comparison with WCSPH method. Later, several 

attempts have been made to improve the accuracy and 

functionality of ISPH method. Khayyer et al. (2008) 

revised the gradient of kernel function to improve the 

preservation of angular momentum. Xu et al. (2009) 

introduced a more stable method based on moving the 
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particles at the end of each time step through the 

streamlines and Rafiee et al. (2012) used modified 

Riemann solver to improve the accuracy of SPH 

methods.  

To overcome unrealistic pressure oscillation in 

WCSPH methods, several attempts have been done 

such as density reinitializing, iteration or grid scheme 

methods (Monaghan 1989, Colagrossi and Landrini 

2003, Fatehi and Manzari 2012, Violeau and Rogers 

2016, Sun et al. 2017). However, this problem can be 

solved by means of ISPH method too.     

Khayyer and Gotoh (2010b) modeled dam break flow 

using different modified forms of SPH, WCSPH and 

moving particle semi-implicit (MPS) methods. They 

concluded that the improved versions of these particle 

methods outperform the original versions in terms of 

both free surface profile and pressure field. According 

to their results, the WCSPH method modified using a 

moving least square (MLS) density re-initialization 

technique results in smoother pressure field than the 

modified MPS method. However, a distinctive 

disadvantage of WCSPH method in comparison with 

two other methods is that WCSPH methods need 

calibration constants. Khayyer and Gotoh (2010b) 

showed the importance of selecting a proper artificial 

viscosity in WCSPH methods. Later, Szewc et al. 

(2012) compared ISPH and WCSPH through 

simulating lid-driven cavity flow. They neglected the 

stability of pressure term and concluded that WCSPH 

needs more computational cost while density error 

accumulation occurs in the original forms of ISPH 

methods. However, the mentioned errors can be 

removed by means of relaxation coefficient or 

imposing additional viscosities (Lee et al. 2008, Xu et 

al. 2009, Asai et al. 2012, Akbari, 2017). Using higher 

orders Poisson Pressure Equation (PPE) or particle 

shifting can also improve the results of ISPH 

(Khayyer et al. 2017, Khayyer and Gotoh 2010a). 

Although ISPH method are concluded to be more 

efficient than WCSPH method in some of the studies 

(Lee et al. 2008, Lee et al. 2010, Gotoh and Khayyer, 

2016), there is not yet a global agreement about this 

issue. Hughes and Graham (2010) by simulating dam 

break and wave impact on vertical wall concluded that 

in the optimum configuration, WCSPH could perform 

as well as ISPH and even in some respects better than 

ISPH. There is a similar conclusion in Shadloo et al.’s 

(2012) study where the accuracy of WCSPH method 

is mentioned as reliable as those of the ISPH and 

FEM. In addition, by comparing the numerical results 

with laboratory data corresponding to dam breaking 

flow, Lee et al. (2008) reported more unreliable 

fluctuations at the surface boundary in the case of 

utilizing ISPH method than WCSPH method. 

Meanwhile, Akbari (2017) introduced an efficient 

method that is applicable in both WCSPH and ISPH 

methods to control these unrealistic fluctuations at 

free surface profile. Gomez-Gesteira et al. (2010b) 

reported these ongoing debates among the SPH 

community about the different approaches to treat the 

compressibility of the fluid and proves that additional 

research should be conducted to elucidate the pros and 

cons of the different approaches.

In this study, performance of ISPH and WCSPH 

methods in modeling a well-known dam break flow is 

studied and it is tried to clarify the main reasons of 

different conclusions in literatures. In next sections, 

after presenting basic equations and numerical issues, 

different numerical concerns including accuracy, 

stability, boundary conditions and computational cost 

of both ISPH and WCSPH methods are investigated 

and reported separately. Then, the main outcomes are 

summarized in conclusion part. 

2. Governing Equations and Numerical models

2.1. Governing Equations
The well-known continuity equations for fluids are:
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Where, w and fU


are density and velocity of the 

fluid, respectively. For a turbulent viscous flow, the 

Lagrangian format of momentum equation is: 
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Where, P  and g


 represent total flow pressure and 

gravitational acceleration vector, respectively. Terms 

on the right hand side of Eq. (3) represents the 

pressure force caused by the pressure gradient, the 

viscous force and the gravitational acceleration, 

respectively. The effective viscosity TwE   is 

summation of fluid kinematic viscosity w (1.0 E-6

for water) and Smagorinsky turbulent viscosity T . 

 2.2. WCSPH and ISPH: Explicit and Semi-implicit 

methods 

In WCSPH method, little compressibility is applied on 

the fluid via equation of state such as one proposed by 

Monaghan (1994) to calculate the pressure term:  
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Where   and w are computed and reference fluid

density, respectively. sV  is the sound velocity 

normally taken as ten times the maximum fluid 

velocity as reported by Lee et al. 2008 to limit the 

density variation to one percent. Because of the large 

speed of the sound and implemented power 

coefficient in Eq. (4), a small fluctuation in the 

density generate a large pressure between two 



Hassan Akbari / IJCOE 2018, 3(1); p.45-57 

47 

adjacent particles and keep them away. Then, the 

particle velocity in the next time step (n+1) can be 

calculated explicitly based on the forces from the 

previous time step (n) i.e. 
nF and the selected time 

step t  as: 

gUPF
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The predictor corrector time stepping method is 

applied in this study for WCSPH method.  

On the other hand, in the ISPH method, fluid 

incompressibility is imposed by means of semi- 

implicit projection method as introduced by Shao and 

Lo (2003). Density invariant (DI) method and 

divergence-free velocity (DV) method are two main 

categories of the projection methods. Xu et al. (2009) 

reported that DV method is more accurate than DI 

method as utilized in this study. In this method, an 

intermediate velocity 
*
fU


 is used and the momentum 

equation is written in two equations their summation 

generates the complete form of the momentum 

equation. 
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By means of Eq. (6), intermediate velocity is obtained 

explicitly as:  

 nfE
n
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After Applying the divergence operator on both sides 

of Eq. (7) and considering a free divergence criterion (

0. 1  n
fU


), the unknown pressure term at the next 

time step ( 1nP ) can be obtained by solving the 

obtained system of linear equations as: 
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This system is solved in this study by means of the 

Preconditioned Bi-conjugate Gradient Stabilized 

Method with Jacobi pre-conditioner as an iterative 

method with the converged normalized residual as 

0.01. Then, the particle velocity is obtained simply by: 
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After computing the velocity of particles at the new 

time step (by means of WCSPH or ISPH), each 

particle moves to its new position ( 1nr


) by making 

use of the averaged velocity as: 
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2.3. SPH principles  

In SPH method, each arbitrary function )(xf  is 

estimated at particle i  by 


j
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j

j

j

m
V


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Where, j  denotes neighboring particles and ijW is 

the value of kernel function of particle i  at the 

position of particle j . Supporting domain of each 

particle is a function of smoothing length ( h ) of the 

kernel function. Selection of smoothing length is 

important. Large values increase the computational 

cost and increase the smoothing effects on the results. 

On the other hand, small values of this parameter may 

results in numerical instabilities due to no interaction 

between two adjacent particles. In this study, the 

effect of this parameter is studied and its default value 

is selected as 1.2 times of particle spacing according 

to other studies (Shao 2010, Khayyer et al. 2008, Price 

2012). In this study, cubic B-Spline kernel function 

with dominant error of )( 2hO  in integral interpolant 

is used as proposed by Monaghan (1992). In SPH 

methods, the computational domain is divided to 

several particles and each particle i  represents a mass 

of im and occupies a volume of iV . Density of the

fluid at that particle is i  and is obtained based on the 

concentration of its neighbor particles j by means of 

density summation method i.e. 


j
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Or, by making use of density variation method which 

is based on the mass continuity equation in WCSPH 

method:  
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In this equation, gradient of kernel function taken with 

respect to the particle i ( ijiW


) is used and 
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are particle 

velocities. Based on SPH algorithm, pressure gradient 

and velocity divergence is estimated as (Monaghan, 

1992): 
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Where 
*
fiU


and 

*
fjU


are intermediate velocities at 

particle i  and j , respectively. Viscosity term can be 

estimated by combining the first derivative of SPH 

and FDM methods as discussed by Shao and Lo 

(2003):  
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In this equation, jiij rrr
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
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

 are the 

position vectors of the particles and h1.0  as 

proposed by Lee et al. (2008). Ei and Ej are

effective viscosity of particle i  and j , respectively. 

Similarly, the pressure gradient can be estimated as:  
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Where, jiij PPp  . Eq. (18) is actually the discrete 

form of Eq.(9) and therefore, it is not applicable in 

WCSPH method where the pressure is obtained using 

the equation of state instead of solving the presented 

system of linear equations. On the other hand, angular 

momentum is not preserved in the common SPH 

method. However, this problem can be solved by 

correcting the kernel gradient via applying a 

corrective matrix iL


 as introduced by Bonet and Lok 

(1999). Khayyer et al. (2008) extended this 

improvement into SPH method and concluded that 

any linear velocity field gradient would be exactly 

evaluated via employment of the corrected kernel 

function as: 

 ( )i ij j i ij j i i ij
i

W V W r r W      (19) 

This correction factor is applied on the kernel gradient 

in this study for both WCSPH and ISPH methods to 

improve the accuracy of the equation discretization.  

2.4. Tensile instability, artificial and surface 

viscosity  

Tensile instability is one of the difficulties of the 

standard SPH where the particles attract each other 

and make unrealistic clumps when the fluid is 

compressed. Swegle et al. (1995) defined the criteria 

of this instability based on the negative pressure and 

the sign of the second derivative of the interpolating 

kernel. As a result, if distance between to pair 

particles gets closer than 3/2h  in the case of using

Cubic-Spline kernel function that is used in this study, 

these particles attract each other and perform a tensile 

instability. Dehnen and Aly (2012) reported less 

instability in the case of implementing Wendland 

kernel function. In addition, Monaghan (2000) 

suggested that the SPH tensile instability can be 

removed by implementing a small repulsive term 

between the SPH particles and this solution is used in 

this study for sensitivity analysis. He used a small 

artificial pressure even if the pressure was positive to 

remove the tendency of particles in forming the local 

linear structures.  

Monaghan (1992) introduced artificial viscosity for 

making the SPH numerical model stable. He 

suggested replacing the artificial viscosity with the 

effective viscosity term in the momentum equation by 

the following definition:  
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Where  is an empirical coefficient that is set to 0.1

in this study. If it is necessary to use artificial 

viscosity instead of effective viscosity, the viscosity 

term in the momentum equation should be considered 

as: 

ijiij

ij
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Main drawback of this type of artificial viscosity is 

that utilizing improper coefficients can generate 

additional unrealistic damping throughout the whole 

flow domain. To limit the damping effect only to the 

surface boundary where the results of SPH method is 

not realistic due to the kernel truncation, a local 

surface viscosity is utilized in this study. The concept 

of surface viscosity was introduced by Xu (2010) and 

later, its workability was improved by the 

improvements suggested by Akbari (2017). In the 

modified surface viscosity method, the viscosity of 

surface particles is replaced with a modified viscosity 

as sartEm    where the effective viscosity 

)( E is the summation of laminar and turbulent

viscosities and the surface artificial viscosity )( sart

is defined as: 

f

f

ssart U
U

U

dr ..).(
max

2
0   (22) 

0dr is the initial particle spacing and maxU is the 

absolute of the maximum particle velocities at each 

time step. s is a damping coefficient that controls

the influence of the artificial viscosity and it is 

selected as unity as recommended by Akbari (2017). 

This type of surface viscosity is applicable in both 

ISPH and WCSPH methods and in contrast to the Xu 

(2010)’s approach, it can be used in variety of models 

with different accuracies and the damping coefficient 

has been defined via a rigorous method. For example, 

in an ideal model with a free divergence velocity 

condition, no excess viscosity is applied to the model. 
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In addition, the surface viscosity is a function of local 

inaccuracy and therefore, it varies from a particle to 

another one as a function of their local inaccuracies. 

The workability of this modified method in damping 

unrealistic fluctuation at free surface boundary is 

investigated in this study too. It was shown by 

Khayyer et al. (2008) that unrealistic surface 

fluctuation can be decreased by use of modified 

gradient kernel and particle surface tracking would be 

improved accordingly. This modification is also used 

in this study to conserve the angular momentum and 

its efficiency in damping surface fluctuations is also 

investigated.    

2.5. Calculation time-step 

CFL, mass force and viscous force are the three 

criteria used for calculating the time step that varies 

during the simulation as:  
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af is the force per unit mass of the fluid that is equal

to the minimum magnitude of particle accelerations 

and t  is set to 0.1 in our numerical models. maxU  is 

maximum velocity of particles in ISPH method and

celerity of sound (numerically 10 times the maximum 

velocity) in WCSPH method.  

2.6. Free surface boundary 

SPH integration is not accurate at the free surface 

boundary because the kernel function is truncated at 

this boundary. As a result, predicted density of surface 

particles via Eq. (13) is less than the actual water 

density. This shortcoming is utilized at each time step 

to detect particles located at free surface boundary. In 

other words, a particle i  is located at the free surface

boundary if its predicted density fulfills (Shao and Lo 

2003):   

9.0;  surfwsurfi  (24) 

After recognizing the surface particles, their pressure 

set to zero. In addition, a surface viscosity as 

introduced in Eq. (22) is applied to the surface 

particles to diminish any unreliable fluctuation.   

2.7. Solid boundary 

Different methods have been introduced for modeling 

solid boundary particles and several attempts have 

been done to make these methods more accurate. 

Generally, one line of fixed particles is used to model 

a solid boundary condition and to make density of 

these particles different from the truncated density of 

surface particles; several lines of dummy particles are 

also applied parallel to the main solid boundary line to 

remedy the truncation error. Ferrari et al. (2009) 

combined different methods to get more reliable 

results near the wall boundary and Ferrand et al. 

(2012) improved modeling of solid boundaries by 

normalizing density of particles near this boundary. 

Several other methods have been introduced too; 

however, all of these methods can be categorized in 

three general groups as repulsive force methods 

(Monaghan 1994), fixed dummy particle methods 

(Shao and Lo 2003) and mirror particle methods 

(Colagrossi and Landrini 2003). In the first method, a 

repulsive force exerts on those fluid particles getting 

close to the solid boundary. In the second method, 

governing equations are solved for solid boundary 

particles as well as fluid particles and therefore, 

internal pressure will be increased when fluid particles 

get close to the boundary particles and prevent them 

from penetrating into the solid boundary. Boundary 

particles are fixed in this method and the pressure of 

outer dummy particles is set equal to the pressure of 

nearest wall particle to impose the homogenous 

Neumann boundary condition. The last method is 

based on considering mirror particles outside the solid 

boundary while their parameters are equal to the 

mirrored parameters of fluid particles closing to the 

solid boundary. Therefore, when a particle gets close 

to a solid boundary, it will sense its mirrored particle 

and pressure will be increased accordingly. 

Consequently, this method is comparable with the 

second method because the pressure term is modified 

by means of solving governing equations instead of 

imposing extra repulsive force. Therefore, the 

accuracy of repulsive force method in comparison 

with artificial particle method is investigated in this 

study.  

Following Monaghan (1994), when distance between 

fluid particle and solid boundary particle get less than 

a defined value of br , in repulsive force method, an

extra force (
R

ijF ) exerts on the pair particle as:
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Where, 1n  and 2n  are empirical coefficients that are 

suggested by Monaghan (1994) as 12.0 and 4.0, 

respectively and D  is an empirical parameter that 

depends on the considered case for simulation.  

3. Accuracy of WCSPH and ISPH methods
Well-known dam break flow is selected to study the

performance of WCSPH and ISPH methods in

modeling free surface flows. Accuracy of simulated

surface profile and pressure term are investigated and

the effects of different terms are discussed. Following

Akbari (2017), the geometry of the problem is

selected as indicated in Fig.1. The bed is wet with
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depth of 0.02m and height and width of the initial 

water column are 0.25m and 0.28m, respectively. 

Total number of particles is 3280 with initial spacing 

as 0.005 and the total simulation time is selected as 

3.2s. The simulations have been carried out on a 

Core2 Duo CPU T7500, 2.13 GHz and RAM 2.0 GB 

Laptop. 

Figure 1. Initial geometry for dam break simulation 

The density summation method as Eq. (13) have been 

used and the simulated results at t=0.3s are shown in 

Fig. 2 for WCSPH with artificial viscosity as Eq. (21) 

and ISPH methods with artificial viscosity and 

modified surface viscosity as Eq. (21) and Eq. (22), 

respectively. Solid line shows the free surface profile 

modeled with WCSPH method. As shown in Fig. 2(a) 

and Fig. 2(b), the simulated surface profiles are nearly 

similar in both WCSPH and ISPH methods with 

artificial viscosity. Yet, the pressure fluctuation in 

WCSPH method is significantly more than fluctuation 

in ISPH method. For example, time series of the 

simulated pressures at a point on the tank floor (red 

point in Fig.2 at x=0.4m,z=0.0) are depicted in Fig. 3. 

Although both methods have resulted in nearly same 

averaged values, high fluctuations are generated in 

WCSPH method. Since equation of state is used to 

calculate the pressures of each individual particle in 

WCSPH method, a little inaccuracy in particle density 

can generate a significant local error in the pressure 

term. Actually imposing incompressibility in WCSPH 

done via pressure adjustment and during this 

procedure pressure accuracy sacrifices. On the other 

hand, a system of linear equations is solved in ISPH 

method to calculate the pressure and therefore, the 

fluctuations in ISPH results are less accordingly. It 

should be noted that the theoretical background of 

ISPH in deriving the incompressible equations is more 

robust than empirically introduced equation of state in 

WCSPH method. However, a divergence-free velocity 

ISPH method is implemented in this study that can 

suffer from conserving continuity equation during the 

simulation.  

Figure 2. Simulated pressure at t=0.3s: a:up)WCSPH with 

artificial viscosity; b:middle) ISPH with artificial viscosity; 

c:down) ISPH with effective viscosity; (Solid line shows the 

surface profile in “a”), results are compatible with Akbari 

(2017) 

Figure 3. Time series of the simulated pressures (at x=0.4m, 

z=0.0m) using WCSPH and ISPH with the same artificial 

viscosity 

To further investigate the results, density conservation 

during the simulations are calculated and the error in 

the mean values (averaged density of all particles at 

each time step) are presented in Fig. 4 for both 

methods. It can be seen that the utilized WCSPH 

method is more accurate in conserving mass during 

the simulation than the utilized ISPH. The maximum 

errors in the mean density in WCSPH and ISPH 

methods are nearly 2% and -3%, respectively. It 

should be noted that local density fluctuations exist 

yet in WCSPH method; however variation of the 

mean density is smoother due to averaging between 

all particles. In other words, although density (and 
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consequently pressure) fluctuation at each particle is 

more in WCSPH than in ISPH, the total mass 

conservation is better satisfied in WCSPH model. 

Figure 4. Error in the mean density using WCSPH and ISPH 

with the same artificial viscosity 

As discussed by Szewc et al., (2012), mechanism of 

the density error in ISPH and WCSPH methods is 

completely different. Using an equation of state in 

WCSPH method generates local errors, while 

movement of particles with a velocity projected onto a 

divergence-free space with no constraint on density 

variation causes accumulated density errors in ISPH 

method. Therefore, the error of WCSPH in Fig.4 has 

reached to a stable point earlier than ISPH method. 

This drawback of ISPH can be corrected using a 

density invariant scheme, yet suffering from errors in 

velocity divergence field. Some improvements such as 

combining these two schemes (Xu et al., 2009) or 

using higher order source terms in equations (Gotoh et 

al., 2014) were introduced to overcome these 

problems of ISPH method. On the other hand, some 

improvements such as normalizing particle densities 

or using a smoothed density (Hughes and Graham, 

2010) were introduced to overcome the problem of 

local variations in WCSPH method. There are also 

other modifications such as particle shifting or density 

normalization applicable to both methods to improve 

density conservation during the simulation. Since a lot 

of modifications have been introduced to improve 

ISPH and WCSPH methods, models with a similar 

condition are utilized in this study for making a fair 

comparison. 

4. Stability of WCSPH and ISPH methods
Although ISPH method is shown to be more robust

and more accurate than WCSPH method particularly

in simulating pressure term, using a global artificial

viscosity can damp the real flows as a result of the

utilized artificial viscosity (  ). As mentioned 

before, artificial viscosity is used to stabilize the 

numerical solution. However, high artificial viscosity 

will generate unrealistic damping and inadequate 

empirical coefficient may affect the model accuracy 

(even in predicting surface profile). The importance of 

selecting an appropriate artificial viscosity in 

modeling dam break flows has been studied by 

Khayyer and Gotoh (2010b). Although the empirical 

coefficient (  ) can be calibrated via experimental 

studies, laboratory data are not always available and 

therefore, the better solution is implementing effective 

viscosity instead of artificial viscosity. Considering 

effective viscosity, simulated pressure pattern by 

means of ISPH method is shown in Fig. 2(c). By 

comparing Fig. 2(b) with Fig. 2(c), it is clear that a 

sharp wave profile can be modeled more clearly by 

means of implementing effective viscosity rather than 

artificial viscosity. On the other hand, by comparing 

the free surface profiles, it can be concluded that an 

extra damping has been occurred in the case of using 

artificial viscosity. 

In addition to the additional viscosities, the smoothing 

length in kernel function can affect the results and 

control the numerical stability of the methods. If 

higher (doubled) smoothing length as 04.2 drh   is 

taken into account instead of 02.1 drh  , surface

profile will not be as smooth as before because more 

particles may stick together as a result of tensile 

instability problem. Particle clustering during wave 

breaking is shown in Fig. 5(b) while there will be no 

problem if less smoothing less is used in simulation as 

Fig. 5(a). A part of the wave profile is presented in 

higher resolution in this figure to clarify particle 

clustering. Actually, when particles get closer than a 

specific distance (i.e. 3/2h  in the case of using 

Cubic-Spline kernel), they will affected by tensile 

instability problem and if higher smoothing length is 

utilized more particles may be surrounded making the 

results inaccurate while the simulation is still stable. 

However, the WCSPH method is not stable and the 

simulation diverges as presented in Fig. 6(a) if 

effective viscosity is used without any stabilization 

technique. As shown in this figure, in addition to 

solution divergence, tensile instability is performed 

even by means of 02.1 drh  and some particles are 

moving as a collocation surrounded inside the kernel 

function. This instability does not happen in ISPH 

method, however, if higher smoothing length is used, 

more particles may stick together and make even 

ISPH solution unstable. Although this problem can be 

solved by means of tensile correction technique, 

WCSPH method is unstable yet because of effective 

viscosity as shown in Fig. 6(b). This means that 

particle collocation due to tensile instability can be 

removed by decreasing the smoothing length in both 

ISPH and WCSPH methods, however, WCSPH can 

be yet unstable and there is a need to use artificial 

viscosities for making this method stable. On the other 

hand, decreasing the smoothing length is limited and 

inadequate reduction can lead to insufficient 

contribution of neighbor particles than will results 

finally in divergence problems during the solution. 
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Figure 6. Simulated pressure by WCSPH method and effective 

viscosity at t=0.2s; a:up) without tensile correction; b:down) 

with tensile correction 

5. Surface boundary and local fluctuations
According to the results, ISPH method is more stable

than WCSPH method and it is also more reliable

particularly in predicting pressure term. However,

unreliable surface fluctuation may occur even in ISPH

method. Although this problem can be solved by

means of artificial viscosity as introduced by

Monaghan (1992), accuracy of the results will be

decreased by artificial viscosity as declared before. An 

effective method in controlling unreliable surface 

fluctuation is implementing additional surface 

viscosity as introduced by Akbari (2017) via Eq. (22). 

The effect of imposing surface viscosity in reducing 

particle jumps near free surface boundary is presented 

in Fig. 7.  

Figure 7. Simulated dame break flow by ISPH method at 

t=0.5s; a:up) non-viscous; b:down) modified surface viscosity  

Figure 5. Particles during simulated wave breaking by ISPH method and effective viscosity at t=0.3s; 

a:up) 02.1 drh  ; b:down) 04.2 drh 

(a) 

(b) 

(a) 

(b) 
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As shown in Fig. 7(a), if no viscosity is applied to the 

fluid, particles will move in a disordered condition 

particularly near the surface profile. However, these 

movements are controlled by means of imposing 

surface viscosity as indicated in Fig. 7(b) and a 

smoother surface profile has been modeled. It should 

be noted that utilizing very large damping coefficient 

can yet results in a global damping similar to the 

effect of imposing traditional artificial viscosities. 

Khayyer et al. (2008) showed that unrealistic surface 

fluctuation could be decreased by means of modified 

gradient of kernel function. This modification is 

considered in this study because angular momentum is 

preserved by this modification. However, its 

efficiency in smoothing the surface profile should be 

studied more in comparison with the surface viscosity. 

Pressure contours in addition to surface particles are 

presented in Fig. 8 during wave breaking at t=0.3s. 

As shown in Fig. 8(a), wave profile is straggly if 

neither kernel gradient modification nor surface 

viscosity is used and this uneven behavior will not be 

solved by use of kernel gradient modification as 

presented n Fig. 8(b). However, as shown in Fig. 8(c), 

a smooth wave profile can be simulated by means of 

surface viscosity even if no kernel modification is 

utilized. 

In addition, if both modified kernel gradient and 

surface viscosity are used, simulated wave profile will 

be smooth and no fluctuation will be seen in the 

surface profile according to Fig. 8(d). Both of these 

modifications shall be used in numerical modeling 

because surface fluctuation can be efficiently removed 

by means of the surface viscosity while angular 

momentum can be preserved via modified gradient of 

kernel function. Although unreliable surface 

fluctuation may be decreased by utilizing modified 

kernel gradient, the effect of the surface viscosity in 

controlling the surface profile is clearly more 

significant and the model accuracy will be conserved 

by this modification. It should be noted that a general 

damping effect can be generated by means of 

imposing an artificial viscosity (as was indicated in 

Fig. 2(b)), however, no general damping has been 

occurred in the case of using surface viscosity (as 

indicated in all the cases in Fig. 8).   

It can be concluded that by means of surface viscosity, 

surface fluctuation will be damped and there is no 

need to use stabilizing methods such as artificial 

viscosity. 

Figure 8. Simulated dame break flow by ISPH method with effective viscosity at t=0.3s; a) Without any modification; 

b) modified kernel; c) modified surface viscosity; d) modified kernel and surface viscosity

b) Surface viscosity: No

Kernel correction: Yes

c) Surface viscosity: Yes

Kernel correction: No

d) Surface viscosity: Yes

Kernel correction: Yes

a) Surface viscosity: No

Kernel correction: No
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6. Solid boundary treatments
Both repulsive boundary and dummy boundary

methods are used in this study to simulate dam break

flow (fluid dam with 0.2m height and 0.1m width in a

box with 0.3m length) by means of both WCSPH and

ISPH methods. Initial particle spacing is set to 0.005m

and the results of simulation by making use of dummy

particle method are shown in Fig. 9 at t=0.3s. In this

figure, ISPH result is shown with two WCSPH results

based on density summation and density variation

methods as Eq. (13) and Eq. (14). Similar to simulated

dam break flow in the previous section, surface profile

is nearly alike in the results of both ISPH and WCSPH

method based on density summation method but,

density variation method is not an accurate as density

summation method in predicting particle positions and

as shown in Fig. 9(c), particles are not uniformly

distributed in the fluid domain that shows

incompressibility criteria will not be satisfied

completely if density summation method is used.

However, dummy particle method can be utilized

efficiently in modeling solid boundary both in

WCSPH and ISPH methods and there is no particle

penetration into solid boundary by means of this

method.

Contrary to dummy particle method, there are some

empirical parameters in the repulsive boundary

method. The force coefficient ( D ) and covered 

distance ( br ) are two important parameters that 

influence on the amount of repulsive force and define 

those fluid particles that the repulsive force should be 

exerted on. To study the efficiency of the repulsive 

force method, different simulation results for dam 

break flow is shown in Fig. 10 by considering 

different empirical parameters and utilizing WCSPH 

method. As shown before, solid boundary can be 

simulated properly by dummy particle method in 

WCSPH method that is however less accurate than 

ISPH method. In Fig. 10(a), empirical coefficients are 

set in a way to have no particle penetration to solid 

boundary (i.e. 44,2.1 0  EDdrrb ). If small 

distance is used (i.e. 001.0br ), fluid particles will 

not affected by the repulsive force at a proper time 

because they are too close to the boundary when they 

receive the repulsive force and fluid particles will 

penetrate into solid boundary accordingly as shown in 

Fig. 10(b). In addition, if repulsive force does not 

properly set fluid particles will pass through the solid 

boundary as shown in Fig. 10(c). In this figure, 

considered repulsive force is less than what is required 

for preventing particles from penetrating into 

boundary. On the other hand, if large repulsive force 

is taken into account, extra force will be exerted on 

the fluid particles make particles reflecting back from 

the boundary with an unreliable velocity. Therefore, 

the efficiency of the repulsive boundary method 

depends on its empirical coefficients and unrealistic 

results may be obtained by means of utilizing 

inadequate parameters. However, this difficulty does 

not happen in dummy particle method because actual 

fluid pressure is used to satisfy boundary condition.  

Figure 9. Simulated dam break at t=0.3s with dummy particle method; 

 a:left) ISPH; b:middle) WCSPH with density summation, c:right) WCSPH with density variation 

Figure 10. Simulated dam break at t=0.3s with repulsive method; 

 a:left) (rb=1.2dr0, D=4E-4); b:middle) small distance: (rb=0.001, D=4E-4); c:right) small repulsive force: (rb=1.2dr0, D=4E-6) 

(a) (b) (c) 

(a) (b) (c)
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7. Computational cost of ISPH vs. WCSPH
Computational times of ISPH and WCSPH methods

are compared in modeling the dam break flow with

initial condition in Fig. 1. Different special resolutions

are also selected to study the computational cost of

SPH methods versus number of particles. All the

simulations have been performed on a Core2 Duo

CPU T7500, 2.13 GHz and RAM 2.0 GB Laptop.

The required CPU times for different cases are

presented in Table 1 and Fig. 11. As shown in this

figure, ISPH method is more computationally efficient

than WCSPH for all of these cases. It should be noted

that similar search algorithm (i.e. linked list method)

is used for searching neighbor particles and a similar

time step based on Eq. (23) is implemented.

According to the transient behavior of the flow,

maximum flow velocities and consequently minimum

time steps change continuously during simulations.

According to the time step criteria defined in Eq. (23),

minimum time step will be decreased if higher

velocity is observed in the simulation. For calculating

the time step, speed of sound is taken into account in

WCSPH method while maximum flow velocity is

used in ISPH method. Therefore, time step is less in

WCSPH method than in ISPH method.

Figure 11. Computational cost of ISPH and WCSPH in 

simulating dam break flow 

Total computational cost depends on both time step 

increment and computational cost per time step. Time 

step increment is related to flow behavior as defined 

in Eq. (23) while computational cost per time step is 

related to the implemented algorithm as well as 

efficient programming. According to Table 1, 

averaged time step in simulating the case II by ISPH 

method is approximately eleven times more than 

required time step in WCSPH, however, ISPH method 

is only six times faster than WCSPH method 

(11322/1867). The main reason is more computational 

cost per time step in ISPH method that is due to 

solving a system of linear equations in ISPH method. 

In other words, for the mentioned case (case II), 

computational cost per time step in ISPH method 

should be nearly two times (i.e. 11/6) more than what 

is in WCSPH method to decrease the total ratio of 

CPU time from eleven to six. Time step can be 

calculated simply, yet researchers might consider 

various algorithms that influence on the computational 

cost per time step. In addition, ratio of the required 

computational cost of ISPH and WCSPH is a function 

of the number of particles. Although ISPH is 

generally faster than WCSPH, the efficiency ratio is 

less for larger number of particles. For example, in 

case I with larger number of particles, ISPH is 5 times 

faster than WCSPH while in case II it is 6 time faster. 

Since WCSPH programming is simpler than ISPH and 

most of its programming techniques exist in ISPH 

method too, it can be concluded that the most 

important issue in comparing computational cost of 

ISPH method against WCSPH method is the utilized 

technique in developed ISPH model. The main 

distinguishing item in ISPH method is solving linear 

equations that are not performed in WCSPH method. 

Since dimension of this linear system is equal to the 

square of particle numbers (i.e. pp nn  ), 

computational cost of ISPH method would be more 

sensitive to the number of particles in comparison 

with WCSPH method. As shown in Fig. 11, ISPH 

computational cost is proportional to 
7.1

pn while the 

power of particle numbers is 1.5 (instead of 1.7) in 

case of WCSPH method. Therefore, in case of 

utilizing very large number of particles, WCSPH 

method can become more efficient than an ISPH 

method that works with a sensitive solver to the 

number of particles. In addition, parallel 

programming, as a good solution for solving large 

number of particles, can be applied simpler to 
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Table 1. Computational cost of ISPH and WCSPH in simulating dam break flow 

Case dx0 No. of 

particles 

Computational cost (s) Averaged time step (s) 

ISPH WCSPH WCSPH/ISPH ISPH WCSPH ISPH/WCSPH 

I 0.0025 11861 15520 77102 4.97 1.80E-04 1.60E-05 11.25 

II 0.005 3280 1867 11322 6.06 3.80E-04 3.40E-05 11.18 

III 0.0075 1461 418 3372 8.07 7.30E-04 5.20E-05 14.04 

IV 0.01 820 165 1422 8.62 9.50E-04 7.20E-05 13.19 

V 0.012 560 77 810 10.52 1.30E-03 8.30E-05 15.66 
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WCSPH than to ISPH. 

The results show that the utilized ISPH is faster than 

WCSPH method in solving common dam break flows. 

This is compatible with the results of some previous 

studies such as Lee et al. (2008) and Lee et al. (2010) 

that have reported a shorter CPU time for ISPH than 

WCSPH in the order of (2 to 20) times. However, 

these values depend on the utilized programming 

techniques as well as the number of particles. This is 

why different researchers have reported dissimilar 

computational costs for ISPH versus WCSPH method.  

8. Conclusions
The accuracy, stability and efficiency of both WCSPH

and ISPH methods are compared in this paper by

means of simulating dam break flow. In addition,

modeling of free surface and solid boundaries are

studied to introduce an effective technique in

modeling boundaries. Computational costs of these

methods are then compared in solving a similar

problem. It should be emphasized that each method

has its individual advantage and drawbacks and a lot

of modifications have been introduced to amend

drawbacks. Meanwhile, original forms or similar

modifications are taken into account in this study to

get fair comparison results and discover intrinsic

drawbacks. Based on the results:

a) Simulated free surface profile is nearly similar

in both ISPH and WCSPH methods. However,

simulated pressure is not accurate in WCSPH method

while no unrealistic pressure fluctuation occurs in

ISPH method.

b) Unrealistic fluctuation of surface particles can

be removed by means of the surface viscosity while

keeping the model accuracy. In simulated cases, the

effect of surface viscosity in smoothing surface profile

is more significant than modifying the gradient of

kernel function.

The results of WCSPH method are more accurate in

case of utilizing density summation method in

comparison with utilizing density variation method.

Although density fluctuation at each particle is more

sensible in WCSPH than in ISPH method, the total

mass continuity is better satisfied in original form of

WCSPH method than in original form of ISPH

method written based on divergence-free velocity

scheme.

c) Dummy and mirror particle methods are more

accurate than repulsive force method in modeling

solid boundaries.

d) ISPH method is generally more stable than

WCSPH method. Although artificial viscosity can be

used to stabilize WCSPH method, the model accuracy

will be decreased in this situation.

e) Both models will be unstable in case of

utilizing small smoothing length because of

insufficient number of interaction particles; however,

tensile instability may occur in addition to unreliable 

smoothing effect if improper large smoothing length 

is utilized. Therefore, smoothing length is proposed as 

1.2 times of the initial particle spacing.     

f) Time step and computational cost per time

step are two important items in total efficiency of

models. Although WCSPH is more efficient than

ISPH in solving each time step (nearly twice faster in

the modeled cases in this study), bigger time steps

(nearly ten times based on the maximum particle

velocities versus sound velocity) can be used in ISPH

method. Computational cost per time step depends on

the number of particles as well as the utilized solver in

ISPH method. According to the simulated cases in this

study, ISPH is nearly five times faster than WCSPH

method, however, this conclusion would be different

in case of using other solvers.

g) In comparison with WCSPH method, the

computational cost of ISPH method is more sensitive

to the number of particles because a system of linear

equations should be solved in each step of the solution

that is an important item in ISPH efficiency.

It should be noted that

Meanwhile
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