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In this study, a simple and efficient approach based on nonlinear wave 

interaction fundamentals is theoretically proposed to generate surface profile of 

the cnoidal waves. The approach includes Newton-Raphson algorithm to 

calculate the Ursell parameter and using a simple formulation to attain time 

series of cnoidal waves profile. The wave profile is determined as a 

superposition of limited number of cosine harmonics without encountering 

difficulties of using elliptic or hyperbolic functions, or any complex and 

complicated differential equations. It is demonstrated that a cnoidal wave 

profile is a result of high order self nonlinear interactions of primary frequency. 

Some definite energy is transmitted to higher harmonics due to nonlinear 

interactions. The amount of transmitted energy is controlled by Ursell 

parameter. The desirable accuracy determines the number of included 

harmonics in the proposed formulation and relative error of approach can be 

predicted based on Fourier and least square analysis techniques. The outputs of 

the proposed method are verified with cnoidal resulted from elliptic functions 

and the high efficiency of new approximation is revealed for engineering 

applications. The calculation of wave parameters such as energy flux, volume 

flux and radiation stress for cnoidal wave can be approximated using the 

proposed method. Using this approach, a physical interpretation of the Bm 

parameter (introduced in the first order of cnoidal wave theory) is presented. 

The calculation of several parameters such as velocity vectors and dynamic 

pressure of cnoidal waves is very simple by means of proposed approach.  
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1. Introduction
As waves propagate toward shallow waters, the sea bed

disturbs the orbital motions of particles and

asymmetrical surface level profiles are appeared. Some

of shallow water phenomena such as shoaling, breaking

and triad interactions become more significant

gradually and affect the wave profile and energy

spectrum, potentially. Some solutions such as higher

order Stokes wave and perturbation theories are

understood to explain the nonlinear waves’

characteristics in the shallow waters. As well as,

cnoidal wave theory can be implemented to describe

the nonlinear waves in the shallow waters.

The triad interactions can be introduced as the most

important responsible for waves’ nonlinearity which is

usually active before wave breaking in the shoaling

zone (1). Phillips (2) showed theoretically that the

second-order Stokes wave is an outcome of a nonlinear

interaction of two primary wave trains. Longuet-

Higgins and Smith (3) confirmed this theory by means 

of laboratory observations. 

The energy spectra of shoaling waves show growth in 

secondary or even tertiary peaks as the result of 

nonlinear interactions. The generation and 

amplification of these harmonics were studied and 

investigated by several observational and numerical 

studies (4-8). Results showed that these harmonics are 

bound with the spectral peak (8-11). The second and 

third peaks of energy spectrum on two and three times 

of spectral peak frequency are very usual for field 

measurements (12, 13). The nonlinearity of waves can 

be explained as the energy transition to higher or lower 

harmonics bounded with main frequency (14). This 

restrictive condition becomes disappeared or 

insignificant for breaker or de-shoaling waves. 

The triad interaction is an energy exchange among 

three waves satisfying the following relationships (3, 6, 

8, 15) 
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321 fff 

321 kkk 

where  and  are scalar frequency and wave-number 

of ith component of an irregular wave train resulted 

from Fourier analysis, respectively. Both primary 

components satisfy the linear dispersion relationship 

(Eq. 3) but the third component might not. The liner 

dispersion relation is  

kdgk tanh2 

where is the gravitational acceleration and .2 f   

When third component also satisfies the linear 

dispersion relationship, resonance occurs and 

considerable energy is transferred to this component. In 

a resonant interaction, the amplitude of the third 

component can grow as large as those of the primary 

components. In non-resonant or so called bound 

interactions, the change in the amplitude of consequent 

component is small and this type of interaction happens 

for non-dispersive waves in shallow waters (2). 

In a train of wave with a distinct spectral peak pf  

containing considerable energy, the self-interaction of 

spectral peak component )( 21 pfff   is more 

feasible than any other combination of primary 

frequencies (9, 16). Some studies highlighted that the 

significant triad interactions occurred between pf and 

pf2 (1, 4). In some other studies higher harmonics up 

to pf4 were investigated (14).

As mentioned, cnoidal wave theory can be utilized to 

explain and determine the distorted linear profile and 

nonlinear properties of asymmetrical waves in shallow 

water. This theory presents the cnoidal wave profile as 

function of elliptic parameters as Eq. (4) 
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where Hcn, Tcn and Lcn are height, period and length of 

cnoidal wave, respectively. Also, cn is a jacobi elliptic 

function and m, E and K are elliptic parameters which 

their relatively complicated definitions are out of the 

scope of present study. 

Solution of cnoidal wave theory was presented by 

Korteweg and De Vries (17). Second order of cnoidal 

wave theory was presented by Laitone (18). The fifth 

order solution of cnoidal wave height was introduced 

by Monkmeyer (19) and improved by Fenton (20), and 

later by Rienecker and Fenton (21). Some of studies 

tried to simplify the available formulas without 

deteriorating their performances (e.g. Fenton and 

Gardiner-Garden (22)). If cnoidal waves are assumed 

as a result of wave by wave nonlinear interactions, it 

seems that simple introduction of this type of wave 

could be presented. This clue is the motivation of the 

present study.   

In the present study, it is attempted to generate the first 

order cnoidal wave profile based on a simple 

formulation and the fact that the self-spectral peak triad 

interaction in higher orders is the sole significant 

interaction. Therefore, the energy of integer multiples 

of spectral peak frequencies grows as the result of 

higher order interactions. The maximum error of 

approach is clarified by combination of least square and 

Fourier analysis. The novelty of this study is presenting 

an approach for engineering applications which has 

appropriate efficiency and applicability without 

encountering complicated differential equations, 

hyperbolic and elliptic functions. 

2. Methodology
Spectral analysis is founded by Fourier transform. Most

of spectral characteristics of wave train data are based

on the energy density variance spectrum which is

resulted by spectral analysis. The Fourier analysis with

almost no limitation is a useful and suitable technique

to determine the exact energy content and its

distribution on indeterminate frequencies and

harmonics. The number of harmonics attained by

Fourier analysis is one half of discrete analyzed data

amount.

Least square technique is another analysis method to

distinct the contribution of several harmonics energy.

The significant difference between this method and

Fourier analysis is that the number and frequencies of

involved harmonics in the least square analysis are

limited and definite. Also, if the difference frequency

of two selected consecutive harmonics is taken lesser,

longer time series will be necessary to distinct the

energy of harmonics and avoid ill condition for

numerical matrix solution in this method. Therefore,

the confidence of time series length is an important fact

in the least square method. Otherwise, the resulted

values of harmonic energy in ill condition are vague,

not reliable and might be several ten times larger than

the actual values.

In this study, the initial time series of first order cnoidal

waves are generated using the Mike21 toolbox. The

time series are set very dense with time step of 0.05 s

to cover very high and steep waves. On the other hand,

the Ursell parameter is calculated based on trinary

cnoidal characteristics (height, wave length, depth) and

using Newton-Rophson algorithm:

3

2

h

LH
Ur cncn (5) 

where h is the water depth. The Ursell parameter is a 

non-dimensional number which demonstrates the 

degree of nonlinearity. Most of cnoidal wave 

parameters are controlled and governed by Ursell 

parameter (23).  

Prepared time series resulted from Mike 21 toolbox are 

analyzed by least square method. The frequencies of 

harmonics are selected based on basic primary cnoidal 
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frequency. In order to avoid uncertain results for higher 

harmonics, the time series were selected with sufficient 

length. Also, Fourier analysis is utilized to ensure the 

reliability of least square results. Since the time series 

of theoretical cnoidal wave have been assumed to be 

noiseless, therefore the length and segmentation of time 

series as well as increasing the analysis degree of 

freedom (d.o.f.) result insignificant changes in Fourier 

transform outcome (less than 0.05% in the worst 

attained result in the present study). The results of least 

square method will be only acceptable if no ill 

condition is attained in the matrix solution of least 

square method and the energy content of least square 

method doesn’t exceed the Fourier ones. Otherwise, the 

time series extension or reduction of included 

harmonics is necessary and unavoidable. The energy 

content of each spectrum is proportional to summation 

of harmonic amplitude squares 






N

i

iaE

1

2
(6) 

where, a stands for harmonic or constituent amplitudes 

in Fourier and least square methods, respectively. The 

relative error of least square analysis can be calculated 

by Eq. (7). 
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where Nhr and Ncons are number of harmonics and 

constituents in the Fourier and least square methods, 

respectively. The positive value of Eq. (7) is an 

indication of acceptable result of least square method. 

The amplitudes of the harmonics resulted from least 

square method can be normalized by primary cnoidal 

height. The normalized amplitudes are called the 

amplitude coefficients (ACs) in this study. 

3. Results and Discussions
3.1. New Approach Introduction

It is normally expected that the all of energy variance

of an apparently linear wave is only attributed to the

frequency of wave. In most cases, the outcomes are not 

consistent with this expectancy. It is usually to observe 

that considerable energy content is devoted to higher 

harmonics of Airy wave frequency. For instance, the 

amplitude spectrum of a cosine incident wave 

generated by a calibrated paddle in a two-dimensional 

flume is shown in Figure 1. The wave with height of 11 

cm and period of 3 s was generated in 40 cm depth of 

water with control of paddle stroke according to Airy 

wave theory. The water fluctuations were recorded by 

a pressure transducer distanced 8.4 m far from paddle. 

Depth attenuation correction was accomplished on the 

pressure data. The reflected wave was removed using 

two other gauges and Mansard and Funke (24) method. 

In Figure 1, it can be observed that the multiples of 

main frequency dedicate considerable energy content 

(relating to amplitude square). As expected, the most 

energy proportion is pertaining to the main frequency 

and the proportion of energy content decreases with 

frequency increment. This evidence can be interpreted 

that the wave becomes nonlinear with the assumed 

characteristics in that water depth and all of bounded 

harmonics travel with an equal and certain celerity in a 

constant nonlinear wave profile. According to cnoidal 

wave theory, the Ursell parameter of this regular wave 

is equal to 63.  

At first, it is supposed that cnoidal wave theory 

represent all characteristics of nonlinear regular waves. 

A first order cnoidal wave time series with 

characteristics of (Hcn=2.5m, Tcn=16s, depth=6.0m) is 

assumed and produced by conventional elliptic 

function (wave toolbox). The Ursell parameter of this 

wave is estimated as 212 using Newton-Rophson 

algorithm. The time series of intended wave was 

analyzed by both of Fourier and least square (based on 

10 harmonics) methods. The Fourier analysis 

frequency resolution is governed by the length of time 

series. So, it is very usual that the energy of a certain 

intrinsic frequency may be distributed between two 

adjacent Fourier frequencies. However, the total energy 

resulted from Fourier analysis of several time series of 

a particular wave with different durations must be the 

same.   

Figure 1. The amplitude spectrum for wave with (H=11cm, T=3s, depth=40cm) 
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Table 1. Results of least square analysis of cnoidal wave (Hcn=2.5m, Tcn=16s, depth=6.0m) 

Con. No. 1 2 3 4 5 6 7 8 9 10 

Period (s) 16.000 8.000 5.333 4.000 3.200 2.667 2.286 2.000 1.778 1.600 

Amp (m) 0.717 0.542 0.359 0.218 0.124 0.068 0.036 0.019 0.010 0.005 

Phase (deg) 44.830 89.661 134.491 179.322 224.152 268.983 313.813 358.644 43.475 88.305 

AC 0.287 0.217 0.144 0.087 0.050 0.027 0.015 0.008 0.004 0.002 

The result of least square analysis is somewhat 

different. The harmonic frequencies are defined and 

imposed by user (n times of main frequency in this 

case). Consequently, the exact energy content of each 

frequency is revealed. It is important to consider 

sufficient time duration of data to avoid the time length 

dependent results of energy (amplitude) for 

consecutive frequencies. The results of least square 

analysis of aforesaid wave are presented in Table 1. 

The result of least square analysis is somewhat 

different. The harmonic frequencies are defined and 

imposed by user (n times of main frequency in this 

case). Consequently, the exact energy content of each 

frequency is revealed. It is important to consider 

sufficient time duration of data to avoid the time length 

dependent results of energy (amplitude) for 

consecutive frequencies. The results of least square 

analysis of aforesaid wave are presented in Table 1.  

In table 1, it can be observed that the higher harmonic 

phase lags are integer multiple of the first harmonic

)( 1 nn  . It means that all of harmonic are bound 

together and this evidence is exactly matched with the 

unique condition of wave by wave nonlinear 

interaction in higher orders and consistent with the key 

assumption of this study. The explained analysis and 

procedure is performed for about 400 different cnoidal 

waves with various trinary characteristics and Ursell 

parameters. These waves are selected in the range of 

weakly nonlinear to very steep waves. The breaking 

limit was ignored because the approach is only founded 

on theoretical and mathematical assumptions. Number 

of harmonics is selected as 25 in the least square 

analysis for all wave data. Finally, the variations of 

amplitude coefficients (ACs) for the first order of 

cnoidal wave versus Ursell parameter is illustrated in 

Figure 2. 

It can be found that the values of ACs are independent 

of wave characteristics and only governed by Ursell 

parameter. Therefore, the formulation of time series of 

cnoidal wave profiles can be expressed as Eq. (8) 

 



N

i

cnicn tiACHtx
1

0)(cos.),( 

which cn is the angular frequency of the cnoidal wave. 

The remaining variable is N which can be determined 

according to the desirable accuracy.  

Two different cnoidal waves were assumed to 

investigate the sensitivity of wave profile perfection to 

the number of included harmonics; a highly nonlinear 

cnoidal wave with bulk wave parameters of (Hcn=2.8m, 

Tcn=19s, depth=4.0m) and a weakly nonlinear wave 

with characteristics of (Hcn=2.0m, Tcn=11s, 

depth=4.0m). The Ursell numbers for above-mentioned 

waves were equal to 956 and 185, respectively. The 

values of ACs were tabulated in Table 2 for these 

waves.  

Figure 2. Variations of amplitude coefficients for the first order cnoidal wave for different harmonics 

(8)
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Table 2. The values of ACs for two different cnoidal waves; a) (Hcn=2.0m, Tcn=11s, depth=4.0m), b) (Hcn=2.8m, Tcn=19s, 

depth=4.0m) 
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In Figures 3a and 3b, two cycles of three wave profiles 

adjusted to proposed approach with 3, 6 and 9 

harmonics are demonstrated. Also, the primary time 

series of cnoidal waves initiated with Mike 21 toolbox 

were depicted in these diagrams. It can be realized that 

the noise was decreased and crests were become 

sharper and higher as more harmonics were included in 

the time series. With an equal number of included 

harmonics for two different cnoidal waves, the relative 

error is more significant for sharper wave (with 

superior nonlinearity degree and Ursell parameter).  

Figure 3. Sensitivity of wave profile perfection to the number 

of included harmonics; a) (Hcn=2.0m, Tcn=11s, depth=4.0m), 

b) (Hcn=2.8m, Tcn=19s, depth=4.0m)

The relative error of energy spectrum of Fourier and 

least square methods is calculated by Eq. (7). This 

value was computed for all of supposed cnoidal wave 

time series with Ursell parameter less than 1000. The 

variable N (number of harmonics) was varied from 1 to 

15 and the result is illustrated in Figure 4. It is clear that 

more harmonics are necessary for minor error. On the 

other hand, for an equal accuracy, more harmonics are 

generally required for steeper waves with a larger 

Ursell parameters.  

In Figure 4, it is resulted that for a permanent allowable 

energy error as 3%, two more harmonics are necessary 

to be included for 200 unit Ursell parameter increment. 

It is worth mentioning that 3% relative error of energy 

is pertaining to less than 2% of nominal cnoidal wave 

height error in the linear wave theory. This accuracy 

satisfies all field and laboratory coastal engineering 

applications.  

If the wave length and cycle period of a regular wave 

is permanent, the wave profile will be stationary 

temporally and spatially. In this case, the celerity of 

wave is constant. We supposed that the cnoidal waves 

are result of some harmonic superposition. Therefore, 

this condition should be met by all of harmonics. This 

statement implies that the celerity of all harmonics is 

exact equal to original cnoidal wave. This means that 

these harmonics are bound together and not governed 

by dispersion relation of linear waves, which is also the 

indication of nonlinear wave interactions. The relation 

between frequency and wave number of each harmonic 

can be similarly written as cnoidal waves  
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in which g is the gravitational acceleration. The term of 





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




K

E
m 32  might be expressed as a function of Ursell 

parameter (23). 

Finally, the profile of water surface for cnoidal waves 

may be presented by the following Eq. (10): 

 




N

i

cncnicn xktiACHtx

1

0)(cos.),( 

where cnk is the cnoidal wave parameter. In this 

formulation, the proportions of the angular frequency 

(speed) and wave number of each harmonic to the main 

cnoidal wave parameters are equal. This means that the 

celerity of each harmonic is equal to the celerity of the 

original cnoidal wave. This is certainly a significance 

to retain the fixed and stationary wave profile.   

(9) 

(10)
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Figure 4. Number of necessary harmonics to satisfy the desirable accuracy 

3.2. New Approach Efficiency Investigation 

In the proposed approach, the surface profile of cnoidal 

wave has been replaced by summation of limited 

number of harmonics. Now it is attempted to assess the 

efficiency of this approach to estimate the physical 

parameters such as energy flux, volume flux and 

radiation stress. These parameters are calculated for 

each harmonic and added up to find out the same 

parameter for the cnoidal wave. According to the linear 

wave theory, the equations for energy flux, volume flux 

and radiation stress are as shown in the Eq. (11) to Eq. 

(13):  
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in which H is the linear wave height, 𝜌 is the water 

density, g is the gravitational acceleration and 

kh
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G

2sinh

2
 . Using proposed approach and considering

shallow water approximations ( khkh ~tanh and 1~G ), 

the energy flux, volume flux and radiation stress could 

be written for cnoidal waves as Eq. (14) to Eq. (16), 

respectively.  
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The common term in these three statements is

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i

iAC
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This term can be calculated from Figure 2. This 

parameter is referred by SAC hereafter for shortening. 

The variation of this term versus Ursell parameter is 

plotted in Figure 5.  

Figure 5. The variation of SAC and Bm versus Ursell number 

(11) 

(12) 

(13) 

(14) 

(15) 

(16)



Seyed Masoud Mahmoudof, Fatemeh Hajivalie / IJCOE 2017, 2(2); p.51-58  

57 

Another interesting result is that the value of SAC is 

exactly twice times of Bm parameter defined by 

cnoidal wave theory (23). The value of Bm is 

calculated for cnoidal waves by  
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This parameter varies from zero for very high and steep 

solitary waves up to 0.125 for linear waves. After 

replacing SAC by Bm, Eq. (18), (19) and (20) can be 

derived.  
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These formulas are exactly the same equations 

presented for the first order cnoidal wave theory (23). 

This outcome illustrates that the value of Bm is the half 

of SAC. It is quite obvious that the accuracy of resulted 

Bm and presented approach for calculating the above 

physical parameters is controlled by the number of 

included harmonics. 

One of the significant advantages of this approach is 

the fact that it is simple to calculate mth order 

derivation of η versus x, as be derived as  
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Replacing the general relationship of Eq. (21) in the 

velocities components (u,v) and the dynamic pressure 

equations resulted from cnoidal wave theory (23) (as 

Eq. (22) to Eq. (24)), returns the desirable parameters’ 

values simply. 
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where 

c

hQw.2 

and c is the celerity of cnoidal wave and z is the 

parameter for vertical coordinate. 

4. Conclusion
In this study, a simple formulation was proposed to

generate the first order cnoidal wave profile. The basis

of approach was founded on triad nonlinear interaction

of wave by wave principles. Also, the Ursell number

was calculated by Newton-Rophson algorithm. It was

supposed that cnoidal wave profile was consequence of

self-interaction of main frequency in high orders.

Therefore, the total of cnoidal energy is distributed on

the integer multiples of cnoidal frequencies. These 

harmonics are bound together with main frequency and 

propagate with the cnoidal celerity and the linear 

dispersion relation is not governing for these 

harmonics. So, it is normal that the wave length and 

period of each harmonic are the same factor of primary 

cnoidal wave’s ones. On the other hand, the phase lags 

of these harmonics are also equal to inverse of same 

factor multiplied with cnoidal phase lag.  

Mike 21 toolbox was implemented to generate the time 

series of several (~400) cnoidal waves with different 

characteristics and vast Ursell parameter range (up to 

2500). Time series were analyzed by least square and 

Fourier methods to find the harmonics' oscillation 

amplitude and energy content of cnoidal wave.  

It was revealed that the proportion of harmonics 

amplitude to the cnoidal wave height is only controlled 

by Ursell parameter. Finally, it was proposed that the 

cnoidal wave profile resulted from elliptic functions 

could be replaced by superposition of several cosine 

waves with certain and specified oscillation amplitude, 

frequency, wave number and phase lags. The only 

remaining parameter must be specified is the number 

of included harmonics in the superposition. The 

desirable accuracy and allowable error determine the 

number of harmonics. The relative error is introduced 

as the proportion of difference between energy contents 

resulted by Fourier and least square to total energy 

content resulted by means of Fourier analysis. For 

instance, eleven harmonics are necessary to include in 

the proposed formulation to avoid more than 3% 

energy error for a cnoidal wave with Ursell number of 

about 900. It was shown that in the range of Ursell 

number lesser than 1000, for 3% allowable error two 

more harmonics must be included for 200 unit Ursell 

parameter increment.  

Finally, the proposed formulation performance was 

investigated by physical parameters such as energy and 

volume fluxes and radiation stress based on linear wave 

theory. It was demonstrated that the new approach is 

completely reliable and efficient. A physical definition 

of Bm (one of first order cnoidal parameter) is one of 

the secondary achievements of this study. It is found 

that this parameter is equal to the half of amplitude 

coefficient (proportion of harmonics amplitude to the 

cnoidal height) squares summation.  

Another superiority of the proposed approach is the 

easiness of mx  (the mth order derivation of water level 

to x) calculation. These parameters ( mx ) are 

implemented to calculate of several physical 

parameters such as velocity vectors and dynamic 

pressure of cnoidal waves.  
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