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The oil and gas pipelines are significant assets in Iran. However, these assets 

are subject to degradation from corrosion.  Corrosion causes gradual thinning 

of the pipelines’ wall leading to leaks or bursts. Allowing a corroding pipeline 

to continue operation may lead to a finite risk of exceeding the limit state of 

burst. Codes of practice, such as Modified ASME B31G [1] and DNV F101 

[3], among others, have developed relationships to determine the bursting 

pressure of corroded pipelines.  The purpose of this paper is to develop, test, 

and illustrate a simple spreadsheet-based probabilistic procedure that can be 

used by practicing engineers to determine the Remaining Useful Life (RUL) 

of a corroding pipeline, following its first inspection.  Modified ASME B31G 

and DNV F101 equations are used to illustrate this method. As new inspection 

data regarding the extent of corrosion becomes available, the results can be 

updated and a new probability of failure can be obtained. The calculated 

probability of failure is then compared with the target values to determine the 

remaining life. The approach is equally applicable to both onshore and 

offshore oil and gas pipelines.  
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1. Introduction
Iran’s gas transmission network covers over 36,000

kilometres. The construction of new pipelines and the

expansion of existing facilities have created an

interconnected pipeline network across the country.

Gas transmission pipeline investment exceeds $6.7

billion.  The total length of gas distribution networks

in large cities is around 264,000 kilometres with a

combined asset value of almost $40 billion. Add to

this the export oil pipelines and pipelines which carry

crude to the refineries and of course around the

refineries themselves. Moreover, 1000s of kilometres

of pipelines transport crude offshore from the Persian

Gulf back onshore to be made ready for sale.

Some of these pipelines have exceeded their design

life and require attention, and some despite being in

service for relatively short period of time are showing

sign of distress.  Even a small improvement in the

asset management of oil and gas infrastructure can

bring significant benefits. Cost savings are possible by

a better maintenance planning, targeted repair and

optimised renewal processes.  Another benefit of

proactive management of the asset is higher reliability

and availability of supply in harsh winter months.

The major failure mode of pipelines is corrosion

damage. Dealing with pipeline corrosion involves

large uncertainties. The main uncertainties are related

to imperfect measurement of metal loss, randomness

of the pipeline data, and variation of operational data. 

DNV RP-F101 has incorporated safety factors to 

account for these uncertainties. However, the way this 

code is applied is as a deterministic approach; like 

other failure pressure equations such as ASME B31G.  

The reliability of a pipeline is also dependent on the 

inspection tool accuracy [4], which is dependent on 

the dispersion of the corrosion growth rate geometry 

of the damaged areas.  Equations in these codes are 

based on large databases and are generally on the safe 

side but by unknown margins.  Codified deterministic 

methods use unfavourable data; e.g. maximum 

corrosion depth, maximum corrosion rate, maximum 

design pressure and minimum wall thickness without 

allowing for uncertainties. Thus, such results can be 

somewhat conservative in terms of probability of 

failure, even for pipelines containing extensive 

corrosion defects. Monitoring the current conditions 

of a pipeline and predicting corrosion trends enables 

the necessary repair to be scheduled under favourable 

conditions.  

For the condition based maintenance, there is a 

demand for forecasting of system degradation through 

a prognostic process. Prediction of the time to failure 

is known as prognosis. Prognosis is viewed as an add-

on capability to the diagnosis that assesses the current 

health of a system, and predicts its remaining useful 

life based on measured data that captures the gradual 
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degradation during operation.  Such methodologies 

are already used in other high reliability systems, e.g. 

naval ships, avionics, etc. 

In the condition based monitoring literature, Prognosis 

is often used in relation with the remaining useful life 

(RUL). ISO 13381-1 defines prognosis as a 

“Technical process resulting in the determination of 

remaining useful life” – where the remaining useful 

life is the time left before observing a failure.  

In conventional maintenance models the important 

uncertainties are; the uncertainty in time to failure 

(lifetime) and the rate of deterioration. Most 

mathematical models are based on describing the 

uncertainty in an ageing system using a lifetime 

distribution.  

For the strength evaluation of a corroded pipe this 

paper has used DNV-F101 and ASME B31G [18]. A 

simple method is used to determine the probability of 

failure due to one defect for each year after the first 

inspection. The failure probability of each defect on a 

pipeline containing many defects is then calculated. 

By using these failure probabilities, the system 

reliability for each kilometre of a pipeline is 

determined, and compared with the target failure 

probabilities, which depends on the pipeline safety 

class.  The year when the failure probability exceeds 

the target value gives the remaining useful life of the 

pipeline. However, by gathering more data this 

prediction can be updated. As a final resort, repair, 

replace or reduction of operating pressure can be used 

to keep a pipeline in service for longer. 

The remaining useful life prediction is affected by 

several sources of uncertainty such as modelling 

errors, measurement errors, future loading uncertainty, 

etc. It is important to accurately account for these 

sources of uncertainty while estimating the RUL. 

Available methods [15 and 16] and a simplified 

classification of prognostic approaches are presented 

in the next section.  Broadly speaking there are three 

primary approaches and a combination of two of 

them, known as the hybrid approach, is also used. 

This paper uses a hybrid approach to determine the 

time to failure of marine pipeline [9].  The approach is 

a combination physics-based (or model based) 

approach and probability of failure method.  

2. Available Diagnosis and Prognosis

Approaches
Diagnosis focuses on detection, isolation,

identification and explanation of failures when they

occur; compared to prognosis, which focuses on

prediction of time to failure before they occur.  There

is a need to describe not only the current state but also

to predict the future state with some level of

confidence. The main goal of the prognosis is to

determine the time to failure, in other words the

remaining useful life (RUL) enabling timely

intervention.  RUL is estimated in discrete times,

which should track the eventual failure.  A degrading

system continues to lose its ability to function safely

as time goes by.  Engineering systems cannot be

allowed to degrade until the probability of failure is

almost 100%.  Codes of practice define a minimum

allowable probability of failure to ensure that the

system has adequate safety margins to operate.

There are a significant number of prognostic

approaches, but the approach is not clearly defined

and consequently there is no generally accepted

classification. The most common classification splits

the prognostics approaches into three main groups:

model-based prognosis, data-driven prognosis and

knowledge-based prognosis [8 and 20]. It should be

remembered that the variety of prognostic approaches

proposed in the literature is so great, it may not be

possible to classify them in a simple fashion as above

[20]. However, what is described below includes

major methods which show a promising contribution

in this field.

Figure 1- Three major approaches and their combination to crate hybrid method. 
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2.1 Data-Driven (DD)  

Data-driven approaches (Figure 1) use the monitored 

operating data (vibration, acoustic signals, 

temperature, pressure, debris, defects etc.) to track, 

approximate and then forecast the system degradation 

behaviour [5 and 17]. DD approaches rely on the 

assumption that the statistical data are relatively 

stable, unless an anomaly occurs in the system. The 

common cause variations are entirely due to 

uncertainties and randomness and evolving defects 

causing variations, e.g. due to corrosion [6].  

The data driven prognosis is based on statistical and 

learning techniques. These range from multivariate 

statistical methods (static and dynamic principle 

component, linear and quadratic discriminant, partial 

least squares, etc.) to black-box methods based on 

artificial neural networks (probabilistic neural 

networks, multi-layer perceptions, radial basis 

functions), graphical models (Bayesian networks, 

hidden Markov model [10]), self-organizing feature 

maps, signal analysis (filters, auto-regressive models, 

FFT etc.), decisions trees and fuzzy rule based 

systems [6, 7, 11 and 13]. Most of the work in data-

driven prognostics has been applied in areas of 

structural health management.  

The ability to transform and to reduce a large amount 

of noisy data into a smaller amount of valid and 

meaningful data set is the advantage of the data driven 

approaches. The disadvantage is the dependency on 

quality and quantity of the operating data, which is the 

driving key element of the prognostic accuracy and 

reliability. Sometimes some fault data is missing and 

it is not possible properly adjust/teach neural 

networks.   

2.2 Model-based (MB)  

Model-based (or physics-based [2]) approaches, are 

very useful, when relatively accurate mathematical 

based models can be developed. Models can be 

classified as qualitative or quantitative descriptors of 

the system. Quantitative models represent 

mathematical and functional relationships between the 

inputs and outputs of a system; while qualitative 

models represent these relationships in terms of 

qualitative functions centred on different units in the 

system [14].  There are a limited number of 

applications of MB to real-world problems, even 

though MB can be considered as the most accurate 

approach.  

Model-based prognostic approaches are also limited 

by the ability to develop high-fidelity models, of 

complex systems and processes. In many situations, 

where models based on the first principles, are not 

available, it is possible to assume a certain form for a 

dynamic model which describes the evolution of a 

degradation process. Then, using observed inputs and 

outputs, the model parameters can be identified in a 

process known as model identification [3]. Prognostic 

approaches using such models are sometimes 

described as hybrid approaches, crossing the boundary 

between model-based and data-based prognostics. 

With the availability of sufficiently descriptive models 

of a degradation process, either physics of failure 

models, or models derived to describe the behaviour 

of historical failure examples, the development of 

prognostic algorithms based upon the application of 

recursive Bayesian estimation techniques are possible 

[10].  

The major advantage of the model-based approach is 

the possibility to accounting the physical knowledge 

of the system into the monitoring process, in other 

words it means that we can reduce the level of sensed 

parameters, or we could determine some parameters 

directly from a model. Model adaptation to a system 

degradation is another advantage of these methods, 

because it helps to keep the prognostics accuracy at 

the demanded level. 

2.3 Knowledge/Probability Based Methods  

This group of methods have the longest history when 

compared to other previously mentioned approaches, 

and does not require too much detailed data, as they 

utilize different kinds of probability distribution 

functions. (PDF) The most commonly used 

distribution functions are normal, Weibull and 

exponential distribution. This group of prognostics 

methods also provides a confidence level. This is 

important for determining the probability and 

accuracy of our estimate. PDF is used in reliability 

analysis.  

This paper focuses on the estimation of the remaining 

useful life (RUL) for prognosis application, 

combining physics based models of evolving 

corrosion and reliability method. Model based 

methods require understanding the physics of 

degradation, while data driven approaches establish 

trends or relationships for the failure data, without too 

much attention to the physics of the problem.  

The first step is to survey the current state of the 

system. The second step is to predict how the 

degradation could progress as a function of time, 

using a degradation model which may either be 

physics-based or data-driven. The third step is to 

define a threshold function which defines the end-of-

life; this threshold function is a binary function and 

can be used to calculate the remaining useful life. The 

remaining useful life prediction is affected by several 

sources of uncertainty such as modelling errors, 

measurement errors, future loading uncertainty, etc., 

and it is important to accurately account for these 

sources of uncertainty while estimating the RUL. 

Remaining useful life is defined as the time when 

equipment performance degrades to the failure 

threshold for the first time.   
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3. Failure Pressure of a Corroded Pipe
Failure Pressure (FP) models are used for the

assessment of corroded pipelines. Examples of FP

models are the DNV-RP-F101 [3] and Modified

ASME B31G.  Each FP model is governed by input

parameters of the pipe outer diameter (D), wall

thickness (t), minimum yield strength (SMYS) or

ultimate tensile strength (UTS), longitudinal extent of

corrosion (l) and corrosion defect depth (d). These

models have helped to avoid unnecessary repairs and

replacement.

These models use single simple corrosion geometry

and the corrosion circumferential width (w) is not

considered [17]. Generally, it is agreed that the

longitudinal extent of corrosion is always more

important than the circumferential width. Defects in

the longitudinal direction have been reported to be the

most severe since they alter the hoop stress

distribution and promote bulging. Hoop stress is the

dominant stress for internal pressure and hence the

parameter d and l have become the important inputs

for the FP models.  The influence of corrosion’s

circumferential width (w) to failures is not that

significant [17]. The parameter w becomes important

when qualitatively assessing the interaction of a group

of defects under the Fitness-for-Service approach.

There are numerous corrosion models, ([12 and 8]),

both stochastic and deterministic. Some authors

assume corrosion starts after a certain number of

years, while others assume the corrosion process starts

immediately. In this paper, we study a pipeline after

the first inspection, when defects have been detected.

The most popular model for the pipeline defect

growth is linear described by the power law model.

𝑑(𝑇) = 𝑑0 + 𝑉𝑑(𝑇 − 𝑇0) (1a) 

𝐿(𝑇) = 𝐿0 + 𝑉𝐿(𝑇 − 𝑇0) (1b)

Where 𝑉𝑑 = 𝑑0 ∆𝑇𝑒⁄  is the rate of corrosion depth, and

𝑉𝐿 = 𝐿0 ∆𝑇𝑒⁄  is the rate of corrosion length.

Generally assigned a single value (say 0.4mm/year), 

or the average of total loss for a given number of 

years (say ∆𝑇𝑒 = 15years), i.e.

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠⁄  [4].  𝑑0  and 𝐿0 are

defect depth and length at the zero time.  

4. Reliability Index
The conditional probability of bursting failure of a

corroded pipeline can be written as:

𝑃𝑓 = 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝐼𝑃) = 𝑃(𝐼𝑃, 𝑋1, 𝑋2, ⋯ , 𝑋𝑛) (2) 

In the second term, the symbol “|” is read given and 

the variable IP is the Internal pressure. In the third 

term, the random variables 𝑋1 through  𝑋𝑛 denote

relevant parameters such as material strength, pipe 

diameter, thickness, defect dimensions, etc. [17].  

Assuming the capacity, C, and demand, D, are 

lognormal random variables, then ln (𝐶) and ln(𝐷) are 

normally distributed. Defining the safety factor 𝐹𝑆 =
𝐶 𝐷⁄ , then 𝑙𝑛𝐹𝑆 = (𝑙𝑛𝐶) − ln (𝐷) and 𝑙𝑛𝐹𝑆 is 

normally distributed. Defining the reliability index as 

the amount that 𝑙𝑛𝐹𝑆 exceeds zero, then: 

𝛽 =
𝐸(𝑙𝑛𝐶 − 𝑙𝑛𝐷)

𝜎(𝑙𝑛𝐶−𝑙𝑛𝐷)
=

𝐸(𝑙𝑛(𝐶 𝐷⁄ ))

𝜎𝑙𝑛(𝐶 𝐷⁄ )
=

𝐸(𝑙𝑛𝐹𝑆)

𝜎𝑙𝑛𝐹𝑆

(3) 

Code equations can be put in the form of the safety 

factor, where capacity and demand are not explicitly 

separated. The reliability index must be determined 

using 𝐸(𝐹𝑆) and 𝜎𝐹𝑆 which is calculated using

multiple runs.  

Thus, the reliability index is determined as follows: 

Table 1- Failure pressure equation of three codes 

Failure Pressure     Failure Pressure Expression  Folias Factor 

Modified ASME 
B31G 𝐹 =

2(𝜎𝑌 + 68.95)𝑡

𝐷
 1 − (𝑑 𝑡⁄ ) 𝑀⁄  

 𝑓𝑜𝑟 𝐺 = 0.893
𝐿(𝑇)

 𝐷𝑡
< 4 

𝑀

=  1 + 0.6275  
𝑙2

𝐷𝑡
− 0.003375

𝑙4

𝐷2𝑙2

𝐼𝑓,  𝑙^2/𝐷𝑡 ≤ 50 

𝑀 = 3.3 + 0.032  
𝑙2

𝐷𝑇

𝐼𝑓,  𝑙^2/𝐷𝑡 > 50 

FITNET 𝑃𝐹

=
2𝜎𝑈𝑡

(𝐷 − 𝑡)2(65 𝜎𝑌⁄ )

1 − (𝑑 𝑡⁄ )

1 − (𝑑 𝑡⁄ ) 𝑀⁄

𝑀 =  1 + 0.8  
𝑙2

𝐷𝑡

DNV RP F101 
𝑃𝐹 =

2𝜎𝑈𝑡

𝐷 − 𝑡

1 − (𝑑 𝑡⁄ )

1 − (𝑑 𝑡⁄ ) 𝑀⁄ 𝑀 =  1 + 0.31  
𝑙2

𝐷𝑡
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Table 2- Design data for the case study 

𝑉𝐹𝑆 =
𝜎𝐹𝑆

𝐸(𝐹𝑆)
(4) 

𝜎𝑙𝑛𝐹𝑆 = √𝑙𝑛(1 + 𝑉𝐹𝑆
2 )

(5) 

𝐸(𝑙𝑛𝐹𝑆) = 𝑙𝑛𝐸(𝐹𝑆) −
1

2
ln (1 + 𝑉𝐹𝑆

2 )
(6) 

The reliability index, 𝛽, is defined as: 

𝛽 =
𝐸(𝑙𝑛𝐹𝑆)

𝜎𝑙𝑛𝐹𝑆
=

𝑙𝑛  𝐸(𝐹𝑆) √1 + 𝑉𝐹𝑆
2⁄  

√𝑙𝑛(1 + 𝑉𝐹𝑆
2 )

(7) 

In this study, the model uncertainty is added as 

another random variable in determining the reliability 

index.  For the DNV method the critical value of the 

safety factor is taken to be 1/0.9=1.111 and for the 

modified B31G is𝐹𝑆 = 1. 

5. Case Study
Table 2 shows the values of the six variables chosen

for this example. Definition of defect parameters is

shown in Figure 2. Additionally, model uncertainty is

assumed to be another random variable.

All variables are listed on the top row. Three values

for each variable is assumed (mean, mean plus and

minus one standard deviation). This creates three

realisations of all variables. The middle columns of

the Table 2 are calculations of the PF.  For the first

analysis (Case 1), the seven random variables are

taken at their expected values (Table 3).

Figure 2- Dimensions of a corrosion defect. 

For the subsequent analyses, one variable is taken at a 

time and its value is assumed to be the expected value, 

plus or minus one standard deviation, while the other 

three variables are kept at their expected values. 

Results obtained from these analyses are used to 

calculate the total variance related to the Safety 

Factor, FS. For instance: 

𝑉𝑎𝑟 𝐹𝑆 ≈
𝐹𝑆 𝑋𝑖+ − 𝐹𝑆 𝑋𝑖− 

2

2

= (
1.6517 − 2.807

2
)
2

= 0.0008 

When the variance components are summed, the total 

variance will be: 0.1285. Taking the square root of the 

variance gives the standard deviation of 0.3566. 

The Safety Factor, 𝐹𝑆, is assumed to be log-normally 

distributed random variable with the expected value 

(first moment) 𝐸(𝐹𝑆) = 1.6628 and 𝜎𝐹𝑆 = 0.3584.

Using the properties of the lognormal distribution, the 

equivalent normally distributed random variable has 

the following parameters: 

𝐸(𝑙𝑛𝐹𝑆) = 𝑙𝑛𝐸 𝐹𝑆 −
1

2
𝜎𝑙𝑛𝐹𝑆

2 = 0.4788 

And 

𝜎𝑙𝑛𝐹𝑆 = √𝑙𝑛(1 + 𝑉𝐹𝑆
2 ) = 0.2145

The probability of failure is given by: 

𝑃𝑓 = 𝑃(𝑙𝑛𝐹𝑆 > 𝑙𝑛𝐹𝑆𝑐𝑟𝑖𝑡) (8) 

The probability is determined assuming the normal 

distribution by calculating the standard normalised 

variable z (analogous to 𝛽): 

𝛽 =
𝑙𝑛𝐹𝑆𝑐𝑟𝑖𝑡−𝐸(𝑙𝑛𝐹𝑆)

𝜎𝑙𝑛𝐹𝑆
=

0.0 − 0.4788

0.2145
= −2.2320 

For this value, the cumulative distribution will be 

𝐹(𝑍) = 0.010944, which represent the probability 

that the safety factor is below the critical value. The 

probability that the safety factor is above the critical 

value is: 

𝑃𝑓 = 1 − 𝐹(𝑧) = 1 − 0.0128 = 0.9872

d 

l

t 

Symbol Variable Unit Mean Standard 
Deviation 

d0 Corrosion Depth mm 8.24 0.1 

l Corrosion Longitudinal length mm 200 0.1 

w Corrosion Circumferential width mm 40 0.1 

D Pipe Diameter mm 914.4 0.02 

t Pipe wall thickness mm 20.6 0.05 

SMTS Specified minimum Tensile 
strength 

MPa 455 0.07 

SMYS Specified minimum Yield strength MPa 358 0.07 

Po Operating Pressure MPa 7.8 0.2 

Model 
uncertainty 

1.0 0.175 
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Figure 3- Probability of failure for the example problem since inspection using Modified B31G and DNV F101 

Figure 4- Comparison of conditional probability of failure for the case study after the inspection 

These analyses were repeated up to 20 years. The 

resulting probabilities of failure are shown in Figure 

3. The same procedure was repeated for the DNV

equation and these results are superimposed on Figure

4. In the above analyses the internal pressure was kept

at 7.2 bar for all cases, only the size of the defect

changed as a function of time.  Taking data after the

inspection (year zero), but changing the internal

pressure gives the conditional probability of failure of

the defective pipe for the internal pressure, as shown

in Figure 3. DNVF101 gives somewhat higher

probability of failure compared with Modified 31G.

6. System Reliability of Corroding Pipeline
Codes of practice generally define three safety classes,

namely 'low', 'normal' and 'high' for pipelines (Table

4). For example, water injection lines may be

classified as being a 'low' safety class while oil

transportation lines may be considered as a 'high'

safety class.

The target failure probabilities in Table 4 is for all

hazards, but approximately half of all failures are due

to corrosion. Thus, for a normal safety class, the target

for corrosion only, is taken to be 5x10-5

Table 4: Target failure probabilities per km per year 

Code Safety class 

Low Normal High 

RP-F101 
(DNV 1999) 

10 -3 10 -4 10 -5

OS-F101 
(DNV 2000) 

10 -3 10 -4 10 -5

(SUPERB project) (1997) 10 -2 - 10 -3 10 -3 - 10 -4 10 -4 - 10 -5 
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Figure 5: Detected defects along the one kilometre of the pipeline. There are 38 large defects shown in red. 

The failure probability calculations, as outlined in the 

previous section, are for just one defect. Each 

kilometre of the pipeline may contain many defects of 

varying sizes.  

Consider a pipeline with the same geometry and 

material as given in Table 1, and operating at 7.2 MPa 

internal pressure, and with the measured defects 

detailed below (Figure 5). 

The maximum measured defect was 4.5 mm deep and 

46 mm long. To simplify calculations and for 

illustration purposes, only defects between 1.6 mm 

deep and 4.5 mm deep are considered (38 of them).  

Each kilometre of the pipeline consists of a chain of 

pipe segments in series [19]. Assuming N components 

at time t then the overall reliability of the system can 

be mathematically expressed as: 

𝑅𝑠𝑦𝑠𝑡𝑒𝑚(𝑡) = ∏𝑅𝑖(𝑡)

𝑁

𝑖=1

(9)

Failures at individual defects are likely to be 

correlated, because the defects are subjected to the 

same internal pressure and pipe properties (e.g. wall 

thickness, yield strength and tensile strength). The 

geometry and growth characteristics of individual 

defects will also be correlated if the defects’ locations 

are exposed to similar environments. Because the 

pipeline segment is a series system, it is conservative 

to ignore the correlation between multiple defects for 

the evaluation of the system reliability. As 

correlations are ignored and all defects are assumed to 

be the same size as the largest measured defect, this 

analysis is somewhat conservative, but will serve for 

the purpose of illustration.  

Figure 6- Failure probability for system and the target level using two codes 
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The reliability of one kilometre of pipeline containing 

38 defects is determined, using DNV F101and B31G

equations. Results are shown in Figure 5. The 

horizontal line on this figure shows the target 

reliability. According to DNV equations this pipeline 

must be inspected 11 years after its initial inspection, 

when the probability of failure exceeds the target 

value. 

7. Conclusions
A simple spreadsheet method to determine the failure

probability of corroded pipelines has been outlined.

The model allows for uncertainty in the variables to

be accounted for. A linear corrosion model has been

used for illustration purposes, but one can equally use

another model.

A target probability of failure is used to decide the end

of useful life. As such the remaining useful life is

dependent on the tolerable failure probability.  The

method described provides a basis for determining

pipeline inspection priority and ultimately for

developing a renewal strategy.
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Appendix A-TAYLOR’S SERIES 

METHOD 
In order to estimate the variability of design results in 

terms of their mean and standard deviations, the First 

Order Second Moment (FOSM) method that involves 

approximation based on Taylor expansion are 

employed in this paper. 𝐸(𝐹𝑆) can be expressed as: 

𝐸 𝐹𝑆 = 𝐹𝑆(𝐸 𝑋1 , 𝐸 𝑋2 ,⋯ , 𝐸 𝑋𝑛 ) (A1) 

where𝑋𝑖(𝑖 = 1,2,3,⋯ ) represents the random 

variables such as material yield strength, wall 

thickness, outside diameter, defect size and so on. 

If the Taylor series expansion for a performance 

function of several random variables, 𝐸(𝐹𝑆), is 

performed about the mean values of the random 

variables, and only first order terms are retained, 

approximate variance of the function can be expressed 

as: 

𝑉𝑎𝑟 𝐹𝑆 = ∑ (
𝜕𝐹𝑆

𝜕𝑋𝑖
)
2

𝜎𝑋𝑖

2

+ 2∑
𝜕𝐹𝑆

𝜕𝑋𝑖

×
𝜕𝐹𝑆

𝜕𝑋𝑗
𝜌𝑋𝑖,𝑋𝑗

𝜎𝑋𝑖
𝜎𝑋𝑗

(A2) 

When the random variables in function 𝐹𝑆 are assumed 

uncorrelated, Equation (A2) can be presented in a 

simpler form as follows: 

𝑉𝑎𝑟 𝐹𝑆 = ∑ (
𝜕𝐹𝑆

𝜕𝑋𝑖
)
2

𝜎𝑋𝑖

2 (A3) 

It is quite common in engineering to encounter non-

closed form of the performance functions. When 𝐹𝑆 is 

a non-closed form function, the partial derivatives of 

𝐹𝑆 can be estimated numerically using the finite 

difference method, i.e.: 

𝜕𝐹𝑆

𝜕𝑋𝑖
≈

𝐹𝑆 𝑋𝑖+ − 𝐹𝑆 𝑋𝑖− 

𝑋𝑖+ − 𝑋𝑖−

(A4)

where; 𝑋𝑖− and 𝑋𝑖+ represents the random variable 𝑋𝑖

taken at some increment above and below its expected 

values (e.g. ±1𝜎 or ±2𝜎). Theoretically, an extremely 

small increment gives the most accurate value of the 

derivative at the expected value. This FOSM method 

allows the engineer to see the contribution of each 

random variable to the total uncertainty in the 𝐹𝑆 

function. 

𝑉𝑎𝑟 𝐹𝑆 ≈ ∑
𝐹𝑆 𝑋𝑖+  − 𝐹𝑆 𝑋𝑖− 

2

𝑛

𝑖=1
(A5) 
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Apendix B:  Table 3: Inputs for the reliability calculation and results (based on DNV-RP-F101) 

Based on Modified B31G 
Operating Pressure 7.2 MPa 10 Years after inspection 

Case Variable's level l (mm) d (mm) w (m) D (mm) t (mm) SMTS STD M PF (MPa) FS 

1 320 13.18 40 914.40 20.60 427 1 2.0741 11.8923 1.6517 1.6517 

2 Low 300 13.18 40 914.40 20.60 427 1 1.9780 12.1013 1.6807 1.6807 

3 High 340 13.18 40 914.40 20.60 427 1 2.1709 11.7067 1.6259 1.6259 0.0008 

4 Low 320 12.36 40 914.40 20.60 427 1 2.0741 12.5012 1.7363 1.7363 

5 High 320 14.01 40 914.40 20.60 427 1 2.0741 11.2557 1.5633 1.5633 0.0075 

6 Low 320 13.18 36 914.40 20.60 427 1 2.0741 11.8923 1.6517 1.6517 

7 High 320 13.18 44 914.40 20.60 427 1 2.0741 11.8923 1.6517 1.6517 0.0000 

8 Low 320 13.18 40 896.11 20.60 427 1 2.0897 12.1027 1.6809 1.6809 

9 High 320 13.18 40 932.69 20.60 427 1 2.0589 11.6898 1.6236 1.6236 0.0008 

10 Low 320 13.18 40 914.40 19.57 427 1 2.1142 10.7126 1.4879 1.4879 

11 High 320 13.18 40 914.40 21.63 427 1 2.0369 13.0559 1.8133 1.8133 0.0265 

12 Low 320 13.18 40 914.40 20.60 401.94 1 2.0741 11.1944 1.5548 1.5548 

13 High 320 13.18 40 914.40 20.60 452.06 1 2.0741 12.5903 1.7486 1.7486 0.0094 

14 Low 320 13.18 40 914.40 20.60 427 0.825 2.0741 11.8923 1.3627 1.3627 

15 High 320 13.18 40 914.40 20.60 427 1.175 2.0741 11.8923 1.9408 1.9408 0.0835 

0.1285 

E(i)= 1.6517 E(ln)= 0.4788 z= -2.2320 

Var(i)= 0.1285 

Sigma(i)= 0.3584 Sigm(ln i) 0.2145 Pr(f)= F(z) 0.0128 

V(i)= 0.2170 

I(crit) 1.0000 Ln(I crit)= 0.0000 Pf=1-F(z) 0.9872 


